Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 835970, 9 pages
Research Article

A Combination of Lipoic Acid Plus Coenzyme Q10 Induces PGC1α, a Master Switch of Energy Metabolism, Improves Stress Response, and Increases Cellular Glutathione Levels in Cultured C2C12 Skeletal Muscle Cells

1Institute of Human Nutrition and Food Science, Christian Albrechts University, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
2Department of Nutritional, Food and Consumer Studies, Fulda University of Applied Sciences, 36039 Fulda, Germany
3Bayer Consumer Care AG, Global Research and Development, 4002 Basel, Switzerland

Received 3 February 2012; Accepted 22 February 2012

Academic Editor: Michalis G. Nikolaidis

Copyright © 2012 A. E. Wagner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Skeletal muscle function largely depend on intact energy metabolism, stress response, and antioxidant defense mechanisms. In this study, we tested the effect of a combined supplementation of α-lipoic acid (LA) plus coenzyme Q10 (Q10) on PPARγ-coactivator α (PGC1α) activity, expression of glutathione-related phase II enzymes and glutathione (GSH) levels in cultured C2C12 myotubes. Supplementation of myotubes with 250 μmol/L LA plus 100 μmol/L Q10 significantly increased nuclear levels of PGC1α, a master switch of energy metabolism and mitochondrial biogenesis. The increase of nuclear PGC1α was accompanied by an increase in PPARγ transactivation, a downstream target of PGC1α, and an increase in mitochondrial transcription factor A mRNA centrally involved in mitochondrial replication and transcription. Furthermore, supplementation of myotubes with LA plus Q10 resulted in an increase of genes encoding proteins involved in stress response, GSH synthesis, and its recycling. In LA-plus-Q10-treated myotubes a significant 4-fold increase in GSH was evident. This increase in GSH was accompanied by increased nuclear Nrf2 protein levels, partly regulating γGCS and GST gene expression. Present data suggest that the combined supplementation of skeletal muscle cells with LA plus Q10 may improve energy homeostasis, stress response, and antioxidant defense mechanisms.