Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 839298, 12 pages
http://dx.doi.org/10.1155/2012/839298
Research Article

Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

1Department of Biochemistry “G. Moruzzi”, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
2University of Ferrara and Cardiovascular Research Center, Salvatore Maugeri Foundation, IRCCS, Via G. Mazzini 129, 25065 Lumezzane, Italy

Received 9 March 2012; Accepted 3 May 2012

Academic Editor: Cristina Angeloni

Copyright © 2012 Laura Zambonin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Quideau, D. Deffieux, C. Douat-Casassus, and L. Pouységu, “Plant polyphenols: chemical properties, biological activities, and synthesis,” Angewandte Chemie, vol. 50, no. 3, pp. 586–621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Lafay and A. Gil-Izquierdo, “Bioavailability of phenolic acids,” Phytochemistry Reviews, vol. 7, no. 2, pp. 301–311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” The American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  4. C. Manach, G. Williamson, C. Morand, A. Scalbert, and C. Rémésy, “Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies,” The American Journal of Clinical Nutrition, vol. 81, no. 1, supplement, pp. 230S–242S, 2005. View at Google Scholar · View at Scopus
  5. M. D'Archivio, C. Filesi, R. Di Benedetto, R. Gargiulo, C. Giovannini, and R. Masella, “Polyphenols, dietary sources and bioavailability,” Annali dell'Istituto Superiore di Sanita, vol. 43, no. 4, pp. 348–361, 2007. View at Google Scholar · View at Scopus
  6. A. Crozier, I. B. Jaganath, and M. N. Clifford, “Dietary phenolics: chemistry, bioavailability and effects on health,” Natural Product Reports, vol. 26, no. 8, pp. 1001–1043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. D'Archivio, C. Filesi, R. Varì, B. Scazzocchio, and R. Masella, “Bioavailability of the polyphenols: status and controversies,” International Journal of Molecular Sciences, vol. 11, no. 4, pp. 1321–1342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Forester and A. L. Waterhouse, “Metabolites are key to understanding health effects of wine polyphenolics,” Journal of Nutrition, vol. 139, no. 9, pp. 1824S–1831S, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Kroon, M. N. Clifford, A. Crozier et al., “How should we assess the effects of exposure to dietary polyphenols in vitro?” The American Journal of Clinical Nutrition, vol. 80, no. 1, pp. 15–21, 2004. View at Google Scholar · View at Scopus
  10. V. Neveu, J. Perez-Jiménez, and F. Vos, “Phenol-explorer: an online comprehensive database on polyphenol contents in foods”. View at Publisher · View at Google Scholar
  11. D. Del Rio, G. Borges, and A. Crozier, “Berry flavonoids and phenolics: bioavailability and evidence of protective effects,” British Journal of Nutrition, vol. 104, supplement 3, pp. S67–S90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nardini, E. Cirillo, F. Natella, and C. Scaccini, “Absorption of phenolic acids in humans after coffee consumption,” Journal of Agricultural and Food Chemistry, vol. 50, no. 20, pp. 5735–5741, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Nardini, F. Natella, C. Scaccini, and A. Ghiselli, “Phenolic acids from beer are absorbed and extensively metabolized in humans,” Journal of Nutritional Biochemistry, vol. 17, no. 1, pp. 14–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. I. Gil, F. Ferreres, and F. A. Tomás-Barberán, “Effect of modified atmosphere packaging on the flavonoids and vitamin C content of minimally processed swiss chard (beta vulgaris subspecies cycla),” Journal of Agricultural and Food Chemistry, vol. 46, no. 5, pp. 2007–2012, 1998. View at Google Scholar · View at Scopus
  15. P. Vitaglione, G. Donnarumma, A. Napolitano et al., “Protocatechuic acid is the major human metabolite of cyanidin-glucosides,” Journal of Nutrition, vol. 137, no. 9, pp. 2043–2048, 2007. View at Google Scholar · View at Scopus
  16. H. Kamata and H. Hirata, “Redox regulation of cellular signalling,” Cellular Signalling, vol. 11, no. 1, pp. 1–14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Ballatori, S. M. Krance, S. Notenboom, S. Shi, K. Tieu, and C. L. Hammond, “Glutathione dysregulation and the etiology and progression of human diseases,” Biological Chemistry, vol. 390, no. 3, pp. 191–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Fruehauf and F. L. Meyskens Jr., “Reactive oxygen species: a breath of life or death?” Clinical Cancer Research, vol. 13, no. 3, pp. 789–794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Battisti, L. D. Maders, M. D. Bagatini et al., “Measurement of oxidative stress and antioxidant status in acute lymphoblastic leukemia patients,” Clinical Biochemistry, vol. 41, no. 7-8, pp. 511–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Farquhar and D. T. Bowen, “Oxidative stress and the myelodysplastic syndromes,” International Journal of Hematology, vol. 77, no. 4, pp. 342–350, 2003. View at Google Scholar · View at Scopus
  21. A. Sallmyr, J. Fan, and F. V. Rassool, “Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair,” Cancer Letters, vol. 270, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. M. Reddy, M. S. Fernandes, R. Salgia, R. L. Levine, J. D. Griffin, and M. Sattler, “NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases,” Leukemia, vol. 25, no. 2, pp. 281–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Halliwell, “Oxidative stress and cancer: have we moved forward?” Biochemical Journal, vol. 401, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. S. Hole, R. L. Darley, and A. Tonks, “Do reactive oxygen species play a role in myeloid leukemias?” Blood, vol. 117, no. 22, pp. 5816–5826, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Y. Liou and P. Storz, “Reactive oxygen species in cancer,” Free Radical Research, vol. 44, no. 5, pp. 479–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Montero and J. Jassem, “Cellular redox pathways as a therapeutic target in the treatment of cancer,” Drugs, vol. 71, no. 11, pp. 1385–1396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Trachootham, J. Alexandre, and P. Huang, “Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 579–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Acharya, I. Das, D. Chandhok, and T. Saha, “Redox regulation in cancer: a double-edged sword with therapeutic potential,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 1, pp. 23–34, 2010. View at Google Scholar · View at Scopus
  29. J. S. Clerkin, R. Naughton, C. Quiney, and T. G. Cotter, “Mechanisms of ROS modulated cell survival during carcinogenesis,” Cancer Letters, vol. 266, no. 1, pp. 30–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. T. Wondrak, “Redox-directed cancer therapeutics: molecular mechanisms and opportunities,” Antioxidants and Redox Signaling, vol. 11, no. 12, pp. 3013–3069, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Wang and J. Yi, “Cancer cell killing via ROS: to increase or decrease, that is a question,” Cancer Biology and Therapy, vol. 7, no. 12, pp. 1875–1884, 2008. View at Google Scholar · View at Scopus
  32. A. M. Martelli, G. Tabellini, R. Bortul et al., “Involvement of the phosphoinositide 3-kinase/Akt signaling pathway in the resistance to therapeutic treatments of human leukemias,” Histology and Histopathology, vol. 20, no. 1, pp. 239–252, 2005. View at Google Scholar · View at Scopus
  33. S. Dong-Yun, D. Yu-Ru, L. Shan-Lin, Z. Ya-Dong, and W. Lian, “Redox stress regulates cell proliferation and apoptosis of human hepatoma through Akt protein phosphorylation,” FEBS Letters, vol. 542, no. 1–3, pp. 60–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Cao, D. Xu, D. Wang et al., “ROS-driven Akt dephosphorylation at Ser-473 is involved in 4-HPR-mediated apoptosis in NB4 cells,” Free Radical Biology and Medicine, vol. 47, no. 5, pp. 536–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Dozio, M. Ruscica, L. Passafaro et al., “The natural antioxidant alpha-lipoic acid induces p27Kip1-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells,” European Journal of Pharmacology, vol. 641, no. 1, pp. 29–34, 2010. View at Google Scholar · View at Scopus
  36. A. M. Martelli, M. Nyåkern, G. Tabellini et al., “Phosphoinositide 3-kinase/ Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia,” Leukemia, vol. 20, no. 6, pp. 911–928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Maraldi, C. Prata, F. Vieceli Dalla Sega et al., “NAD(P)H oxidase isoform Nox2 plays a prosurvival role in human leukaemia cells,” Free Radical Research, vol. 43, no. 11, pp. 1111–1121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Maraldi, C. Prata, D. Fiorentini, L. Zambonin, L. Landi, and G. Hakim, “Induction of apoptosis in a human leukemic cell line via reactive oxygen species modulation by antioxidants,” Free Radical Biology and Medicine, vol. 46, no. 2, pp. 244–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Prata, T. Maraldi, D. Fiorentini, L. Zambonin, G. Hakim, and L. Landi, “Nox-generated ROS modulate glucose uptake in a leukaemic cell line,” Free Radical Research, vol. 42, no. 5, pp. 405–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Maraldi, C. Prata, C. Caliceti et al., “VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis,” International Journal of Oncology, vol. 36, no. 6, pp. 1581–1589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Fiorentini, M. Cipollone, M. C. Galli, A. Pugnaloni, G. Biagini, and L. Landi, “Characterization of large unilamellar vesicles as models for studies of lipid peroxidation initiated by azocompounds,” Free Radical Research, vol. 21, no. 5, pp. 329–339, 1994. View at Google Scholar · View at Scopus
  42. M. Lepoivre, A. C. Roche, J. P. Tenu, J. F. Petit, D. Nolibe, and M. Monsigny, “Identification of two macrophage populations by flow cytometry monitoring of oxidative burst and phagocytic functions,” Biology of the Cell, vol. 57, no. 2, pp. 143–146, 1986. View at Google Scholar · View at Scopus
  43. S. J. Vowells, S. Sekhsaria, H. L. Malech, M. Shalit, and T. A. Fleisher, “Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes,” Journal of Immunological Methods, vol. 178, no. 1, pp. 89–97, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. S. P. Cole, “Rapid chemosensitivity testing of human lung tumor cells using the MTT assay,” Cancer Chemotherapy and Pharmacology, vol. 17, no. 3, pp. 259–263, 1986. View at Google Scholar · View at Scopus
  45. Y. Yamamoto, E. Niki, Y. Kamiya, and H. Shimasaki, “Oxidation of lipids. 7. Oxidation of phosphatidylcholines in homogeneous solution and in water dispersion,” Biochimica et Biophysica Acta, vol. 795, no. 2, pp. 332–340, 1984. View at Publisher · View at Google Scholar · View at Scopus
  46. G. F. Pedulli, M. Lucarini, E. Marchesi et al., “Medium effects on the antioxidant activity of dipyridamole,” Free Radical Biology and Medicine, vol. 26, no. 3-4, pp. 295–302, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Amorati, G. F. Pedulli, L. Cabrini, L. Zambonin, and L. Landi, “Solvent and pH effects on the antioxidant activity of caffeic and other phenolic acids,” Journal of Agricultural and Food Chemistry, vol. 54, no. 8, pp. 2932–2937, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. W. A. Pryor, J. A. Cornicelli, L. J. Devall et al., “A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants,” Journal of Organic Chemistry, vol. 58, no. 13, pp. 3521–3522, 1993. View at Google Scholar · View at Scopus
  49. C. A. Rice-Evans, N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridham, “The relative antioxidant activities of plant-derived polyphenolic flavonoids,” Free Radical Research, vol. 22, no. 4, pp. 375–383, 1995. View at Google Scholar · View at Scopus
  50. C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Structure-antioxidant activity relationships of flavonoids and phenolic acids,” Free Radical Biology and Medicine, vol. 20, no. 7, pp. 933–956, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Bors, C. Michel, and K. Stettmaier, “Antioxidant effects of flavonoids,” BioFactors, vol. 6, no. 4, pp. 399–402, 1997. View at Google Scholar · View at Scopus
  52. W. Bors, C. Michel, and K. Stettmaier, “Structure-activity relationships governing antioxidant capacities of plant polyphenols,” Methods in Enzymology, vol. 335, pp. 166–180, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Pedrielli, G. F. Pedulli, and L. H. Skibsted, “Antioxidant mechanism of flavonoids. Solvent effect on rate constant for chain-breaking reaction of quercetin and epicatechin in autoxidation of methyl linoleate,” Journal of Agricultural and Food Chemistry, vol. 49, no. 6, pp. 3034–3040, 2001. View at Google Scholar · View at Scopus
  54. G. Brigati, M. Lucarini, V. Mugnaini, and G. F. Pedulli, “Determination of the substituent effect on the O-H bond dissociation enthalpies of phenolic antioxidants by the EPR radical equilibration technique,” Journal of Organic Chemistry, vol. 67, no. 14, pp. 4828–4832, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Cao and Z. X. Yao, “The hemangioblast: from concept to authentication,” Anatomical Record, vol. 294, no. 4, pp. 580–588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Zhu, K. Hattori, H. Zhang et al., “Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity,” Leukemia, vol. 17, no. 3, pp. 604–611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Aguayo, H. Kantarjian, T. Manshouri et al., “Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes,” Blood, vol. 96, no. 6, pp. 2240–2245, 2000. View at Google Scholar · View at Scopus
  58. G. McMahon, “VEGF receptor signaling in tumor angiogenesis,” Oncologist, vol. 5, supplement 1, pp. 3–10, 2000. View at Google Scholar · View at Scopus
  59. S. Shinkaruk, M. Bayle, G. Laïn, and G. Déléris, “Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy,” Current Medicinal Chemistry—Anti-Cancer Agents, vol. 3, no. 2, pp. 95–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Shibuya, “Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis,” Journal of Biochemistry and Molecular Biology, vol. 39, no. 5, pp. 469–478, 2006. View at Google Scholar · View at Scopus
  61. S. M. Weis and D. A. Cheresh, “Tumor angiogenesis: molecular pathways and therapeutic targets,” Nature Medicine, vol. 17, no. 11, pp. 1359–1370, 2011. View at Google Scholar
  62. V. Rajagopalan, D. W. Essex, S. S. Shapiro, and B. A. Konkle, “Tumor necrosis factor-α modulation of glycoprotein Ibα expression in human endothelial and erythroleukemia cells,” Blood, vol. 80, no. 1, pp. 153–161, 1992. View at Google Scholar · View at Scopus
  63. K. A. Weigel-Kelley, M. C. Yoder, and A. Srivastava, “Recombinant human parvovirus B19 vectors: erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells,” Journal of Virology, vol. 75, no. 9, pp. 4110–4116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Eruslanov and S. Kusmartsev, “Identification of ROS using oxidized DCFDA and flow-cytometry,” Methods in Molecular Biology, vol. 594, pp. 57–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Farah, M. Monteiro, C. M. Donangelo, and S. Lafay, “Chlorogenic acids from green coffee extract are highly bioavailable in humans,” Journal of Nutrition, vol. 138, no. 12, pp. 2309–2315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. R. M. Valls, A. Soler, J. Girona et al., “Effect of the long-term regular intake of virgin olive oil on the phenolic metabolites in human fasting plasma,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 1, pp. 68–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Del Rio, A. Stalmach, L. Calani, and A. Crozier, “Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols,” Nutrients, vol. 2, no. 8, pp. 820–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Maraldi, C. Prata, D. Fiorentini, L. Zambonin, L. Landi, and G. Hakim, “Signal processes and ROS production in glucose transport regulation by thrombopoietin and granulocyte macrophage-colony stimulation factor in a human leukaemic cell line,” Free Radical Research, vol. 41, no. 12, pp. 1348–1357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Maraldi, D. Fiorentini, C. Prata, L. Landi, and G. Hakim, “Glucose-transport regulation in leukemic cells: how can H2O2 mimic stem cell factor effects?” Antioxidants and Redox Signaling, vol. 9, no. 2, pp. 271–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Prata, T. Maraldi, L. Zambonin, D. Fiorentini, G. Hakim, and L. Landi, “ROS production and Glut1 activity in two human megakaryocytic cell lines,” BioFactors, vol. 20, no. 4, pp. 223–233, 2004. View at Google Scholar · View at Scopus
  71. D. Fiorentini, C. Prata, T. Maraldi et al., “Contribution of reactive oxygen species to the regulation of Glut1 in two hemopoietic cell lines differing in cytokine sensitivity,” Free Radical Biology and Medicine, vol. 37, no. 9, pp. 1402–1411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Maraldi, D. Fiorentini, C. Prata, L. Landi, and G. Hakim, “Stem cell factor and H2O2 induce GLUT1 translocation in M07e cells,” BioFactors, vol. 20, no. 2, pp. 97–108, 2004. View at Google Scholar · View at Scopus
  73. J. T. Sims and R. Plattner, “MTT assays cannot be utilized to study the effects of STI571/Gleevec on the viability of solid tumor cell lines,” Cancer Chemotherapy and Pharmacology, vol. 64, no. 3, pp. 629–633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Bruggisser, K. von Daeniken, G. Jundt, W. Schaffner, and H. Tullberg-Reinert, “Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay,” Planta Medica, vol. 68, no. 5, pp. 445–448, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Peng, B. Wang, and P. Ren, “Reduction of MTT by flavonoids in the absence of cells,” Colloids and Surfaces B, vol. 45, no. 2, pp. 108–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. K. N. Wisman, A. A. Perkins, M. D. Jeffers, and A. E. Hagerman, “Accurate assessment of the bioactivities of redox-active polyphenolic in cell culture,” Journal of Agricultural and Food Chemistry, vol. 56, no. 17, pp. 7831–7837, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Brognard, A. S. Clark, Y. Ni, and P. A. Dennis, “Akt/pbotein kinace B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation,” Cancer Research, vol. 61, no. 10, pp. 3986–3997, 2001. View at Google Scholar · View at Scopus
  78. A. Dutton, G. M. Reynolds, C. W. Dawson, L. S. Young, and P. G. Murray, “Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR,” Journal of Pathology, vol. 205, no. 4, pp. 498–506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. B. D. Manning and L. C. Cantley, “AKT/PKB signaling: navigating downstream,” Cell, vol. 129, no. 7, pp. 1261–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Vivanco and C. L. Sawyers, “The phosphatidylinositol 3-kinase-AKT pathway in human cancer,” Nature Reviews Cancer, vol. 2, no. 7, pp. 489–501, 2002. View at Google Scholar · View at Scopus