Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 902716, 9 pages
http://dx.doi.org/10.1155/2012/902716
Research Article

Curcumin and Other Polyphenolic Compounds in Head and Neck Cancer Chemoprevention

Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany

Received 11 January 2012; Revised 17 February 2012; Accepted 5 March 2012

Academic Editor: Luciano Pirola

Copyright © 2012 Philipp Baumeister et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Vineis, M. Alavanja, P. Buffler et al., “Tobacco and cancer: recent epidemiological evidence,” Journal of the National Cancer Institute, vol. 96, no. 2, pp. 99–106, 2004. View at Google Scholar · View at Scopus
  2. D. P. Slaughter, H. W. Southwick, and W. Smejkal, “Field cancerization in oral stratified squamous epithelium: clinical implications of multicentric origin,” Cancer, vol. 6, no. 5, pp. 963–968, 1953. View at Google Scholar
  3. M. B. Sporn, “Approaches to prevention of epithelial cancer during the preneoplastic period,” Cancer Research, vol. 36, no. 7, pp. 2699–2702, 1976. View at Google Scholar · View at Scopus
  4. W. K. Hong, J. Endicott, and M. Itri, “13-cis-retinoic acid in the treatment of oral leukoplakia,” New England Journal of Medicine, vol. 315, no. 24, pp. 1501–1505, 1986. View at Google Scholar
  5. R. Doll and R. Peto, “The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today,” Journal of the National Cancer Institute, vol. 66, no. 6, pp. 1191–1308, 1981. View at Google Scholar · View at Scopus
  6. D. M. Winn, R. G. Ziegler, and L. W. Pickle, “Diet in the etiology of oral and pharyngeal cancer among women from the southern United States,” Cancer Research, vol. 44, no. 3, pp. 1216–1222, 1984. View at Google Scholar · View at Scopus
  7. E. L. Franco, L. P. Kowalski, B. V. Oliveira et al., “Risk factors for oral cancer in Brazil: a case-control study,” International Journal of Cancer, vol. 43, no. 6, pp. 992–1000, 1989. View at Google Scholar · View at Scopus
  8. T. Takezaki, K. Hirose, M. Inoue et al., “Tobacco, alcohol and dietary factors associated with the risk of oral cancer among Japanese,” Japanese Journal of Cancer Research, vol. 87, no. 6, pp. 555–562, 1996. View at Google Scholar · View at Scopus
  9. F. Levi, C. Pasche, C. la Vecchia et al., “Food groups and risk of oral and pharyngeal cancer,” International Journal of Cancer, vol. 77, no. 5, pp. 705–709, 1998. View at Google Scholar
  10. R. Peto, R. Doll, J. D. Buckley, and M. B. Sporn, “Can dietary beta-carotene materially reduce human cancer rates?” Nature, vol. 290, no. 5803, pp. 201–213, 1981. View at Google Scholar · View at Scopus
  11. S. M. Lippman, S. E. Benner, and W. K. Hong, “Retinoid chemoprevention studies in upper aerodigestive tract and lung carcinogenesis,” Cancer Research, vol. 54, no. 7, 1994. View at Google Scholar · View at Scopus
  12. G. S. Omenn, G. E. Goodman, M. D. Thornquist et al., “Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial,” Journal of the National Cancer Institute, vol. 88, no. 21, pp. 1550–1559, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Albanes, O. P. Heinonen, J. K. Huttunen et al., “Effects of α-tocopherol and β-carotene supplements on cancer incidence in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study,” American Journal of Clinical Nutrition, vol. 62, no. 6, 1995. View at Google Scholar · View at Scopus
  14. N. van Zandwijk, O. Dalesio, U. Pastorino, N. de Vries, and H. van Tinteren, “EUROSCAN, a randomized trial of vitamin A and N-acetylcysteine in patients with head and neck cancer or lung cancer. For the EUropean Organization for Research and Treatment of Cancer Head and Neck and Lung Cancer Cooperative Groups,” Journal of the National Cancer Institute, vol. 92, no. 12, pp. 977–986, 2000. View at Google Scholar
  15. T. Byers, “What can randomized controlled trial tell us about nutrition and cancer prevention?” Ca-A Cancer Journal for Clinicians, vol. 49, no. 6, pp. 353–361, 1999. View at Google Scholar · View at Scopus
  16. F. R. Datema, M. B. Ferrier, and R. J. Baatenburg de Jong, “Impact of severe malnutrition on short-term mortality and overall survival in head and neck cancer,” Oral Oncology, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. Duffy, D. L. Ronis, S. McLean et al., “Pretreatment health behaviors predict survival among patients with head and neck squamous cell carcinoma,” Journal of Clinical Oncology, vol. 27, no. 12, pp. 1969–1975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Rodgman and T. A. Perfetti, “The chemical components identified in tobacco and tobacco smoke prior to 1954: a chronology of classical chemistry,” Beitrage zur Tabakforschung International, vol. 23, no. 5, pp. 277–333, 2009. View at Google Scholar · View at Scopus
  19. D. F. Church and W. A. Pryor, “Free-radical chemistry of cigarette smoke and its toxicological implications,” Environmental Health Perspectives, vol. 64, pp. 111–126, 1985. View at Google Scholar · View at Scopus
  20. B. Halliwell, “Oxidative stress and cancer: have we moved forward?” Biochemical Journal, vol. 401, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Panayiotidis, “Reactive oxygen species (ROS) in multistage carcinogenesis,” Cancer Letters, vol. 266, no. 1, pp. 3–5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. M. Baird, L. A. Hooven, and B. Mahadevan, “Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action,” Environmental and Molecular Mutagenesis, vol. 45, no. 2-3, pp. 106–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. B. van Loon, E. Markkanen, and U. Hübscher, “Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine,” DNA Repair, vol. 9, no. 6, pp. 604–616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Halliwell, “The antioxidant paradox,” The Lancet, vol. 355, no. 9210, pp. 1179–1180, 2000. View at Google Scholar · View at Scopus
  25. U. Harréus, P. Baumeister, S. Zieger, and C. Matthias, “The influence of high doses of vitamin C and zinc on oxidative DNA damage,” Anticancer Research, vol. 25, no. 5, pp. 3197–3201, 2005. View at Google Scholar · View at Scopus
  26. S. Renaud, M. De Lorgeril, R. Rylander, B. Hennig, and D. Heimburger, “The French paradox: dietary factors and cigarette smoking-related health risks,” Annals of the New York Academy of Sciences, vol. 686, pp. 299–309, 1993. View at Google Scholar · View at Scopus
  27. J. B. German and R. L. Walzem, “The health benefits of wine,” Annual Review of Nutrition, vol. 20, pp. 561–593, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. L. L. Greasy and M. Coffee, “Phytoalexin production potential of grape berries,” Journal of the American Society for Horticultural Science, vol. 113, pp. 230–234, 1998. View at Google Scholar
  29. T. M. A. El Attar and A. S. Virji, “Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation,” Anti-Cancer Drugs, vol. 10, no. 2, pp. 187–193, 1999. View at Google Scholar · View at Scopus
  30. M. Athar, J. H. Back, X. Tang et al., “Resveratrol: a review of preclinical studies for human cancer prevention,” Toxicology and Applied Pharmacology, vol. 224, no. 3, pp. 274–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Bishayee, “Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials,” Cancer Prevention Research, vol. 2, no. 5, pp. 409–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Rahman, A. R. M. R. Amin, and D. M. Shin, “Chemopreventive potential of natural compounds in head and neck cancer,” Nutrition and Cancer, vol. 62, no. 7, pp. 973–987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Nepka, E. Asprodini, and D. Kouretas, “Tannins, xenobiotic metabolism and cancer chemoprevention in experimental animals,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 24, no. 2, pp. 183–189, 1999. View at Google Scholar · View at Scopus
  34. M. Nomura, H. Tsukada, D. Ichimatsu, H. Ito, T. Yoshida, and K. I. Miyamoto, “Inhibition of epidermal growth factor-induced cell transformation by tannins,” Phytochemistry, vol. 66, no. 17, pp. 2038–2046, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Walle, A. M. Browning, L. L. Steed, S. G. Reed, and U. K. Walle, “Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans,” Journal of Nutrition, vol. 135, no. 1, pp. 48–52, 2005. View at Google Scholar · View at Scopus
  36. K. Murota and J. Terao, “Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism,” Archives of Biochemistry and Biophysics, vol. 417, no. 1, pp. 12–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Min and S. E. Ebeler, “Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells,” Food and Chemical Toxicology, vol. 47, no. 11, pp. 2716–2722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Metodiewa, A. K. Jaiswal, N. Cenas, E. Dickancaité, and J. Segura-Aguilar, “Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product,” Free Radical Biology and Medicine, vol. 26, no. 1-2, pp. 107–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. S. De, R. N. Chakraborty, S. Ghosh, A. Sengupta, and S. Das, “Comparative evaluation of cancer chemopreventive efficacy of alpha-tocopherol and quercetin in a murine model,” Journal of Experimental and Clinical Cancer Research, vol. 23, no. 2, pp. 251–258, 2004. View at Google Scholar · View at Scopus
  40. H. H. S. Chow and I. A. Hakim, “Pharmacokinetic and chemoprevention studies on tea in humans,” Pharmacological Research, vol. 64, no. 2, pp. 105–112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. S. Yang, P. Maliakal, and X. Meng, “Inhibition of carcinogenesis by tea,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 25–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Ermakova, B. Y. Choi, H. S. Choi, B. S. Kang, A. M. Bode, and Z. Dong, “The intermediate filament protein vimentin is a new target for epigallocatechin gallate,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 16882–16890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Li, Z. He, S. Ermakova et al., “Direct inhibition of insulin-like growth factor-I receptor kinase activity by (−)-epigallocatechin-3-gallate regulates cell transformation,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 3, pp. 598–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Shim, Z. Y. Su, J. I. Chae et al., “Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1,” Cancer Prevention Research, vol. 3, no. 5, pp. 670–679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Hou, S. Sang, H. You et al., “Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation- dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells,” Cancer Research, vol. 65, no. 17, pp. 8049–8056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. C. Liang, S. Y. Lin-shiau, C. F. Chen, and J. K. Lin, “Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells,” Journal of Cellular Biochemistry, vol. 67, no. 1, pp. 55–65, 1997. View at Google Scholar
  47. M. Shimizu, A. Deguchi, J. T. E. Lim, H. Moriwaki, L. Kopelovich, and I. B. Weinstein, “(−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells,” Clinical Cancer Research, vol. 11, no. 7, pp. 2735–2746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Adachi, T. Nagao, H. I. Ingolfsson et al., “The inhibitory effect of (−)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells,” Cancer Research, vol. 67, no. 13, pp. 6493–6501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. C. S. Yang, H. Wang, G. X. Li, Z. Yang, F. Guan, and H. Jin, “Cancer prevention by tea: evidence from laboratory studies,” Pharmacological Research, vol. 64, no. 2, pp. 113–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Boehm, F. Borrelli, E. Ernst et al., “Green tea (Camellia sinensis) for the prevention of cancer,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD005004, 2009. View at Google Scholar · View at Scopus
  51. A. Khafif, S. P. Schantz, T. C. Chou, D. Edelstein, and P. G. Sacks, “Quantitation of chemopreventive synergism between (−)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells,” Carcinogenesis, vol. 19, no. 3, pp. 419–424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Li, X. Chen, J. Liao et al., “Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin,” Carcinogenesis, vol. 23, no. 8, pp. 1307–1313, 2002. View at Google Scholar · View at Scopus
  53. A. L. Chen, C. H. Hsu, J. K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4, pp. 2895–2900, 2001. View at Google Scholar · View at Scopus
  54. B. Rai, J. Kaur, R. Jacobs, and J. Singh, “Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress,” Journal of Oral Science, vol. 52, no. 2, pp. 251–256, 2010. View at Google Scholar · View at Scopus
  55. C. L. Kuo, S. Y. Wu, S. W. Ip et al., “Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses,” International Journal of Oncology, vol. 39, no. 2, pp. 319–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Liao, J. Xia, Z. Chen et al., “Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of notch-1 and NF-κB signaling pathways,” Journal of Cellular Biochemistry, vol. 112, no. 4, pp. 1055–1065, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. T. Lin, L. F. Wang, and Y. C. Hsu, “Curcuminoids suppress the growth of pharynx and nasopharyngeal carcinoma cells through induced apoptosis,” Journal of Agricultural and Food Chemistry, vol. 57, no. 9, pp. 3765–3770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Sharma, J. Kaur, S. Shishodia, B. B. Aggarwal, and R. Ralhan, “Curcumin down regulates smokeless tobacco-induced NF-κB activation and COX-2 expression in human oral premalignant and cancer cells,” Toxicology, vol. 228, no. 1, pp. 1–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. M. M. Lotempio, M. S. Veena, H. L. Steele et al., “Curcumin suppresses growth of head and neck squamous cell carcinoma,” Clinical Cancer Research, vol. 11, no. 19, pp. 6994–7002, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. C. R. Leemans, B. J. M. Braakhuis, and R. H. Brakenhoff, “The molecular biology of head and neck cancer,” Nature Reviews Cancer, vol. 11, no. 1, pp. 9–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Baumeister, S. Schwenk-Zieger, M. Reiter, C. Welz, and U. Harréus, “Transforming Growth Factor-alpha reduces carcinogen-induced DNA damage in mini-organ cultures from head-and-neck cancer patients,” Mutation Research, vol. 677, no. 1-2, pp. 42–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Baumeister, K. Heinrich, M. Märte, M. Reiter, S. Schwenk-Zieger, and U. Harréus, “The impact of EGFR stimulation and inhibition on BPDE induced DNA fragmentation in oral/oropharyngeal mucosa in vitro,” Oral Oncology, vol. 47, pp. 1141–1147, 2011. View at Google Scholar
  63. J. M. Yang, G. F. Sullivan, and W. N. Hiat, “Regulation of the function of P-glycoprotein by epidermal growth factor through phospholipase C,” Biochemical Pharmacology, vol. 53, no. 11, pp. 1597–1604, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Myllynen, T. Kurttila, L. Vaskivuo, and K. Vähäkangas, “DNA damage caused by benzo(a)pyrene in MCF-7 cells is increased by verapamil, probenecid and PSC833,” Toxicology Letters, vol. 169, no. 1, pp. 3–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. G. C. Yeh, J. Lopaczynska, C. M. Poore, and J. M. Phang, “A new functional role for P-glycoprotein: efflux pump for benzo(a)pyrene in human breast cancer MCF-7 cells,” Cancer Research, vol. 52, no. 23, pp. 6692–6695, 1992. View at Google Scholar · View at Scopus
  66. K. K. Ang, B. A. Berkey, X. Tu et al., “Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma,” Cancer Research, vol. 62, no. 24, pp. 7350–7356, 2002. View at Google Scholar · View at Scopus
  67. J. Baselga, J. M. Trigo, J. Bourhis et al., “Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck,” Journal of Clinical Oncology, vol. 23, no. 24, pp. 5568–5577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Martínez-Lacaci, P. GarcÍa Morales, J. L. Soto, and M. Saceda, “Tumour cells resistance in cancer therapy,” Clinical and Translational Oncology, vol. 9, no. 1, pp. 13–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Sarkadi, L. Homolya, G. Szakács, and A. Váradi, “Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system,” Physiological Reviews, vol. 86, no. 4, pp. 1179–1236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. S. K. Steinsvåg, M. Strand, O. Berg, M. Miaguchi, and J. Olofsson, “Human respiratory mucosa in a nonadhesive stationary organ culture system,” Laryngoscope, vol. 101, no. 12, pp. 1323–1331, 1991. View at Google Scholar · View at Scopus
  71. N. H. Kleinsasser, J. Juchhoff, B. C. Wallner et al., “The use of mini-organ cultures of human upper aerodigestive tract epithelia in ecogenotoxicology,” Mutation Research, vol. 561, no. 1-2, pp. 63–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, “Tobacco smoke and involuntary smoking,” IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, vol. 83, pp. 1–1413, 2004. View at Google Scholar · View at Scopus
  73. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, “Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures,” IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, vol. 92, pp. 1–853, 2010. View at Google Scholar · View at Scopus
  74. D. Warshawsky and J. R. Landolph, Molecular Carcinogenesis and the Molecular Biology of Human Cancer, CRC Press, New York, NY, USA, 2006.
  75. R. F. Newbold and P. Brookes, “Exceptional mutagenicity of a benzo[a]pyrene diol epoxide in cultured mammalian cells,” Nature, vol. 261, no. 5555, pp. 52–54, 1976. View at Google Scholar · View at Scopus
  76. M. F. Denissenko, A. Pao, M. S. Tang, and G. P. Pfeifer, “Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53,” Science, vol. 274, no. 5286, pp. 430–432, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. J. A. Imlay, S. M. Chin, and S. Linn, “Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro,” Science, vol. 240, no. 4852, pp. 640–642, 1988. View at Google Scholar · View at Scopus
  78. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide, vol. 71, International Agency for Research on Cancer, Lyon, France, 1999.
  79. G. Speit, S. Hanelt, R. Helbig, A. Seidel, and A. Hartmann, “Detection of DNA effects in human cells with the comet assay and their relevance for mutagenesis,” Toxicology Letters, vol. 88, no. 1–3, pp. 91–98, 1996. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Baumeister, M. Reiter, N. Kleinsasser, C. Matthias, and U. Harréus, “Epigallocatechin-3-gallate reduces DNA damage induced by benzo[a]pyrene diol epoxide and cigarette smoke condensate in human mucosa tissue cultures,” European Journal of Cancer Prevention, vol. 18, no. 3, pp. 230–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Baumeister, M. Reiter, S. Zieger, C. Matthias, and U. Harréus, “DNA-protective potential of polyphenols in human mucosa cell cultures,” HNO, vol. 56, no. 8, pp. 795–798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Reiter, K. Rupp, P. Baumeister, S. Zieger, and U. Harréus, “Antioxidant effects of quercetin and coenzyme Q10 in mini organ cultures of human nasal mucosa cells,” Anticancer Research, vol. 29, no. 1, pp. 33–39, 2009. View at Google Scholar · View at Scopus
  83. P. Møller, “The alkaline comet assay: towards validation in biomonitoring of DNA damaging exposures,” Basic and Clinical Pharmacology and Toxicology, vol. 98, no. 4, pp. 336–345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. R. Collins, A. A. Oscoz, G. Brunborg et al., “The comet assay: topical issues,” Mutagenesis, vol. 23, no. 3, pp. 143–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. P. L. Olive and J. P. Banáth, “The comet assay: a method to measure DNA damage in individual cells,” Nature Protocols, vol. 1, no. 1, pp. 23–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Devaraj and I. Jialal, “Failure of vitamin E in clinical trials: is gamma-tocopherol the answer?” Nutrition Reviews, vol. 63, no. 8, pp. 290–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. Q. Jiang, S. Christen, M. K. Shigenaga, and B. N. Ames, “γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention,” American Journal of Clinical Nutrition, vol. 74, no. 6, pp. 714–722, 2001. View at Google Scholar · View at Scopus
  88. H. Y. Huang and L. J. Appel, “Supplementation of diets with α-tocopherol reduces serum concentrations of γ- and δ-tocopherol in humans,” Journal of Nutrition, vol. 133, no. 10, pp. 3137–3140, 2003. View at Google Scholar · View at Scopus