Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 906252, 23 pages
http://dx.doi.org/10.1155/2012/906252
Review Article

Cocoa Polyphenols and Their Potential Benefits for Human Health

Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain

Received 14 February 2012; Revised 18 May 2012; Accepted 31 May 2012

Academic Editor: Luciano Pirola

Copyright © 2012 I. Andújar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Szkudelska, L. Nogowski, and T. Szkudelski, “Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 113, no. 1-2, pp. 17–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Ahn, I. Cho, S. Kim, D. Kwon, and T. Ha, “Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet,” Journal of Hepatology, vol. 49, no. 6, pp. 1019–1028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Li, A. Allen, J. Kwagh et al., “Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase,” The Journal of Biological Chemistry, vol. 281, no. 15, pp. 10214–10221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Bose, J. D. Lambert, J. Ju, K. R. Reuhl, S. A. Shapses, and C. S. Yang, “The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice,” The Journal of Nutrition, vol. 138, no. 9, pp. 1677–1683, 2008. View at Google Scholar · View at Scopus
  5. M. A. Potenza, F. L. Marasciulo, M. Tarquinio et al., “EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR,” American Journal of Physiology, vol. 292, no. 5, pp. E1378–E1387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ejaz, D. Wu, P. Kwan, and M. Meydani, “Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice,” The Journal of Nutrition, vol. 139, no. 5, pp. 919–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Egert, A. Bosy-Westphal, J. Seiberl et al., “Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study,” British Journal of Nutrition, vol. 102, no. 7, pp. 1065–1074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. K. Kim, K. B. Kwon, M. Y. Song et al., “Flavonoids protect against cytokine-induced pancreatic β-cell damage through suppression of nuclear factor κB activation,” Pancreas, vol. 35, no. 4, pp. e1–e9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Ruiz, A. Braune, G. Hölzlwimmer, L. Quintanilla-Fend, and D. Haller, “Quercetin inhibits TNF-induced NF-κB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells,” The Journal of Nutrition, vol. 137, no. 5, pp. 1208–1215, 2007. View at Google Scholar · View at Scopus
  10. S. Martínez-Flórez, B. Gutiérrez-Fernández, S. Sánchez-Campos, J. González-Gallego, and M. J. Tuñón, “Quercetin attenuates nuclear factor-κB activation and nitric oxide production in interleukin-1β-activated rat hepatocytes,” The Journal of Nutrition, vol. 135, no. 6, pp. 1359–1365, 2005. View at Google Scholar · View at Scopus
  11. L. Rivera, R. Morón, M. Sánchez, A. Zarzuelo, and M. Galisteo, “Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats,” Obesity, vol. 16, no. 9, pp. 2081–2087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Egert, C. Boesch-Saadatmandi, S. Wolffram, G. Rimbach, and M. J. Müller, “Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype,” The Journal of Nutrition, vol. 140, no. 2, pp. 278–284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. P. Cherniack, “Polyphenols: planting the seeds of treatment for the metabolic syndrome,” Nutrition, vol. 27, no. 6, pp. 617–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. L. Keen, “Chocolate: food as medicine/medicine as food,” Journal of the American College of Nutrition, vol. 20, supplement 5, pp. 436S–439S, 2001. View at Google Scholar · View at Scopus
  15. J. Wollgast and E. Anklam, “Polyphenols in chocolate: is there a contribution to human health?” Food Research International, vol. 33, no. 6, pp. 449–459, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Schinella, S. Mosca, E. Cienfuegos-Jovellanos et al., “Antioxidant properties of polyphenol-rich cocoa products industrially processed,” Food Research International, vol. 43, no. 6, pp. 1614–1623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Hatano, H. Miyatake, M. Natsume et al., “Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects,” Phytochemistry, vol. 59, no. 7, pp. 749–758, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Weisburger, “Chemopreventive effects of cocoa polyphenols on chronic diseases,” Experimental Biology and Medicine, vol. 226, no. 10, pp. 891–897, 2001. View at Google Scholar · View at Scopus
  19. F. M. Steinberg, M. M. Bearden, and C. L. Keen, “Cocoa and chocolate flavonoids: Implications for cardiovascular health,” Journal of the American Dietetic Association, vol. 103, no. 2, pp. 215–223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Sanbongi, N. Suzuki, and T. Sakane, “Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro,” Cellular Immunology, vol. 177, no. 2, pp. 129–136, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. T. P. Kenny, C. L. Keen, H. H. Schmitz, and M. E. Gershwin, “Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cells,” Experimental Biology and Medicine, vol. 232, no. 2, pp. 293–300, 2007. View at Google Scholar · View at Scopus
  22. E. Ramiro, A. Franch, C. Castellote, C. Andrés-Lacueva, M. Izquierdo-Pulido, and M. Castell, “Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line,” British Journal of Nutrition, vol. 93, no. 6, pp. 859–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Ramiro-Puig and M. Castell, “Cocoa: antioxidant and immunomodulator,” British Journal of Nutrition, vol. 101, no. 7, pp. 931–940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Pérez-Berezo, A. Franch, S. Ramos-Romero, C. Castellote, F. J. Pérez-Cano, and M. Castell, “Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats,” Molecular Nutrition and Food Research, vol. 55, supplement 1, pp. S56–S66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Selmi, T. K. Mao, C. L. Keen, H. H. Schmitz, and M. E. Gershwin, “The anti-inflammatory properties of cocoa flavanols,” Journal of Cardiovascular Pharmacology, vol. 47, no. 2, pp. S163–S171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. G. W. Dryden, M. Song, and C. McClain, “Polyphenols and gastrointestinal diseases,” Current Opinion in Gastroenterology, vol. 22, no. 2, pp. 165–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Andújar, M. C. Recio, R. M. Giner et al., “Inhibition of ulcerative colitis in mice after oral administration of a polyphenol-enriched cocoa extract is mediated by the inhibition of STAT1 and STAT3 phosphorylation in colon cells,” Journal of Agricultural and Food Chemistry, vol. 59, no. 12, pp. 6474–6483, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Ren, Z. Qiao, H. Wang, L. Zhu, and L. Zhang, “Flavonoids: promising anticancer agents,” Medicinal Research Reviews, vol. 23, no. 4, pp. 519–534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Rusconi and A. Conti, “Theobroma cacao L., the food of the Gods: a scientific approach beyond myths and claims,” Pharmacological Research, vol. 61, no. 1, pp. 5–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. A. Tomás-Barberán, E. Cienfuegos-Jovellanos, A. Marín et al., “A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans,” Journal of Agricultural and Food Chemistry, vol. 55, no. 10, pp. 3926–3935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. D. Mellor, T. Sathyapalan, E. S. Kilpatrick, S. Beckett, and S. L. Atkin, “High-cocoa polyphenol-rich chocolate improves HDL cholesterol in type 2 diabetes patients,” Diabetic Medicine, vol. 27, no. 11, pp. 1318–1321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Monagas, N. Khan, C. Andres-Lacueva et al., “Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease,” American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1144–1150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Williamson, “Bioavailability and health effects of cocoa polyphenols,” Inflammopharmacology, vol. 17, no. 2, article 111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. R. Holt, S. A. Lazarus, M. C. Sullards et al., “Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa,” American Journal of Clinical Nutrition, vol. 76, no. 4, pp. 798–804, 2002. View at Google Scholar · View at Scopus
  35. J. P. E. Spencer, F. Chaudry, A. S. Pannala, S. K. Srai, E. Debnam, and C. Rice-Evans, “Decomposition of cocoa procyanidins in the gastric milieu,” Biochemical and Biophysical Research Communications, vol. 272, no. 1, pp. 236–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Y. Rios, R. N. Bennett, S. A. Lazarus, C. Rémésy, A. Scalbert, and G. Williamson, “Cocoa procyanidins are stable during gastric transit in humans,” American Journal of Clinical Nutrition, vol. 76, no. 5, pp. 1106–1110, 2002. View at Google Scholar · View at Scopus
  37. M. P. Gonthier, J. L. Donovan, O. Texier, C. Felgines, C. Remesy, and A. Scalbert, “Metabolism of dietary procyanidins in rats,” Free Radical Biology and Medicine, vol. 35, no. 8, pp. 837–844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Ortega, J. Reguant, M. P. Romero, A. Macià, and M. J. Motilva, “Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model,” Journal of Agricultural and Food Chemistry, vol. 57, no. 13, pp. 5743–5749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  40. K. W. Lee, Y. J. Kim, H. J. Lee, and C. Y. Lee, “Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine,” Journal of Agricultural and Food Chemistry, vol. 51, no. 25, pp. 7292–7295, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Schroeder, L. O. Klotz, D. P. Buchczyk, C. D. Sadik, T. Schewe, and H. Sies, “Epicatechin selectively prevents nitration but not oxidation reactions of peroxynitrite,” Biochemical and Biophysical Research Communications, vol. 285, no. 3, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. S. V. Verstraeten, J. F. Hammerstone, C. L. Keen, C. G. Fraga, and P. I. Oteiza, “Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa,” Journal of Agricultural and Food Chemistry, vol. 53, no. 12, pp. 5041–5048, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Martorell, J. V. Forment, R. de Llanos et al., “Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress,” Journal of Agricultural and Food Chemistry, vol. 59, no. 5, pp. 2077–2085, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Spadafranca, C. Martínez-Conesa, S. Sirini, and G. Testolin, “Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects,” British Journal of Nutrition, vol. 103, no. 7, pp. 1008–1014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Gu, W. J. Hurst, D. A. Stuart, and J. D. Lambert, “Inhibition of key digestive enzymes by cocoa extracts and procyanidins,” Journal of Agricultural and Food Chemistry, vol. 59, no. 10, pp. 5305–5311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Hanhineva, R. Törrönen, I. Bondia-Pons et al., “Impact of dietary polyphenols on carbohydrate metabolism,” International Journal of Molecular Sciences, vol. 11, no. 4, pp. 1365–1402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Grassi, G. Desideri, S. Necozione et al., “Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate,” The Journal of Nutrition, vol. 138, no. 9, pp. 1671–1676, 2008. View at Google Scholar · View at Scopus
  48. M. G. Shrime, S. R. Bauer, A. C. McDonald, N. H. Chowdhury, C. E. Coltart, and E. L. Ding, “Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies,” The Journal of Nutrition, vol. 141, no. 11, pp. 1982–1988, 2011. View at Google Scholar
  49. L. Hooper, C. Kay, A. Abdelhamid et al., “Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials,” American Journal of Clinical Nutrition, vol. 95, no. 3, pp. 740–751, 2012. View at Publisher · View at Google Scholar
  50. A. Yasuda, M. Natsume, N. Osakabe, K. Kawahata, and J. Koga, “Cacao polyphenols influence the regulation of apolipoprotein in HepG2 and Caco2 cells,” Journal of Agricultural and Food Chemistry, vol. 59, no. 4, pp. 1470–1476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Khan, M. Monagas, C. Andres-Lacueva et al., “Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease,” Nutrition, Metabolism and Cardiovascular Diseases. In press. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Jia, X. Liu, Y. Y. Bai et al., “Short-term effect of cocoa product consumption on lipid profile: a meta-analysis of randomized controlled trials,” American Journal of Clinical Nutrition, vol. 92, no. 1, pp. 218–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Almoosawi, L. Fyfe, C. Ho, and E. Al-Dujaili, “The effect of polyphenol-rich dark chocolate on fasting capillary whole blood glucose, total cholesterol, blood pressure and glucocorticoids in healthy overweight and obese subjects,” British Journal of Nutrition, vol. 103, no. 6, pp. 842–850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Corti, A. J. Flammer, N. K. Hollenberg, and T. F. Lüscher, “Cocoa and cardiovascular health,” Circulation, vol. 119, no. 10, pp. 1433–1441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Gómez-Juaristi, L. González-Torres, L. Bravo, M. P. Vaquero, S. Bastida, and F. J. Sánchez-Muniz, “Beneficial effects of chocolate on cardiovascular health,” Nutricion Hospitalaria, vol. 26, no. 2, pp. 289–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. O. Khawaja, J. M. Gaziano, and L. Djoussé, “Chocolate and coronary heart disease: a systematic review,” Current Atherosclerosis Reports, vol. 13, no. 6, pp. 447–452, 2011. View at Publisher · View at Google Scholar
  57. H. Sies, T. Schewe, C. Heiss, and M. Kelm, “Cocoa polyphenols and inflammatory mediators,” The American Journal of Clinical Nutrition, vol. 81, no. 1, supplement, pp. 304S–312S, 2005. View at Google Scholar · View at Scopus
  58. V. B. Schini-Kerth, C. Auger, N. Étienne-Selloum, and T. Chataigneau, “Polyphenol-induced endothelium-dependent relaxations. Role of NO and EDHF,” Advances in Pharmacology, vol. 60, pp. 136–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. K. W. Lee, N. J. Kang, M. H. Oak et al., “Cocoa procyanidins inhibit expression and activation of MMP-2 in vascular smooth muscle cells by direct inhibition of MEK and MT1-MMP activities,” Cardiovascular Research, vol. 79, no. 1, pp. 34–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Corder, “Red wine, chocolate and vascular health: developing the evidence base,” Heart, vol. 94, no. 7, pp. 821–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. T. K. Mao, J. van de Water, C. L. Keen, H. H. Schmitz, and M. E. Gershwin, “Cocoa flavonols and procyanidins promote transforming growth factor-β1 homeostasis in peripheral blood mononuclear cells,” Experimental Biology and Medicine, vol. 228, no. 1, pp. 93–99, 2003. View at Google Scholar · View at Scopus
  62. E. L. Ding, S. M. Hutfless, X. Ding, and S. Girotra, “Chocolate and prevention of cardiovascular disease: a systematic review,” Nutrition and Metabolism, vol. 3, article 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. K. J. Murphy, A. K. Chronopoulos, I. Singh et al., “Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function,” American Journal of Clinical Nutrition, vol. 77, no. 6, pp. 1466–1473, 2003. View at Google Scholar · View at Scopus
  64. A. J. Flammer, F. Hermann, I. Sudano et al., “Dark chocolate improves coronary vasomotion and reduces platelet reactivity,” Circulation, vol. 116, no. 21, pp. 2376–2382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Carnevale, L. Loffredo, P. Pignatelli et al., “Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers,” Journal of Thrombosis and Haemostasis, vol. 10, no. 1, pp. 125–132, 2012. View at Publisher · View at Google Scholar
  66. M. Galleano, O. Pechanova, and C. G. Fraga, “Hypertension, nitric oxide, oxidants, and dietary plant polyphenols,” Current Pharmaceutical Biotechnology, vol. 11, no. 8, pp. 837–848, 2010. View at Google Scholar · View at Scopus
  67. E. Cienfuegos-Jovellanos, M. Del Mar Quiñones, B. Muguerza, L. Moulay, M. Miguel, and A. Aleixandre, “Antihypertensive effect of a polyphenol-rich cocoa powder industrially processed to preserve the original flavonoids of the cocoa beans,” Journal of Agricultural and Food Chemistry, vol. 57, no. 14, pp. 6156–6162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Akita, M. Kuwahara, F. Itoh et al., “Effects of cacao liquor polyphenols on cardiovascular and autonomic nervous functions in hypercholesterolaemic rabbits,” Basic and Clinical Pharmacology and Toxicology, vol. 103, no. 6, pp. 581–587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Rimbach, M. Melchin, J. Moehring, and A. E. Wagner, “Polyphenols from cocoa and vascular health—a critical review,” International Journal of Molecular Sciences, vol. 10, no. 10, pp. 4290–4309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Ried, O. R. Frank, and N. P. Stocks, “Dark chocolate or tomato extract for prehypertension: a randomised controlled trial,” BMC Complementary and Alternative Medicine, vol. 9, article 22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Grassi, G. Desideri, and C. Ferri, “Blood pressure and cardiovascular risk: what about cocoa and chocolate?” Archives of Biochemistry and Biophysics, vol. 501, no. 1, pp. 112–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Actis-Goretta, J. I. Ottaviani, and C. G. Fraga, “Inhibition of angiotensin converting enzyme activity by flavanol-rich foods,” Journal of Agricultural and Food Chemistry, vol. 54, no. 1, pp. 229–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Desch, J. Schmidt, D. Kobler et al., “Effect of cocoa products on blood pressure: systematic review and meta-analysis,” American Journal of Hypertension, vol. 23, no. 1, pp. 97–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Ramiro, A. Franch, C. Castellote et al., “Flavonoids from Theobroma cacao down-regulate inflammatory mediators,” Journal of Agricultural and Food Chemistry, vol. 53, no. 22, pp. 8506–8511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Y. Zhang, H. Q. Liu, K. Q. Xie et al., “Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells,” Biochemical and Biophysical Research Communications, vol. 345, no. 1, pp. 508–515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Romier, Y. J. Schneider, Y. Larondelle, and A. During, “Dietary polyphenols can modulate the intestinal inflammatory response,” Nutrition Reviews, vol. 67, no. 7, pp. 363–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Romier-Crouzet, J. van de Walle, A. During et al., “Inhibition of inflammatory mediators by polyphenolic plant extracts in human intestinal Caco-2 cells,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1221–1230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Vázquez-Agell, M. Urpi-Sarda, E. Sacanella et al., “Cocoa consumption reduces NF-κB activation in peripheral blood mononuclear cells in humans,” Nutrition, Metabolism and Cardiovascular Diseases. In press. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Shapiro, P. Singer, Z. Halpern, and R. Bruck, “Polyphenols in the treatment of inflammatory bowel disease and acute pancreatitis,” Gut, vol. 56, no. 3, pp. 426–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Yamagishi, N. Osakabe, M. Natsume et al., “Anticlastogenic activity of cacao: inhibitory effect of cacao liquor polyphenols against mitomycin C-induced DNA damage,” Food and Chemical Toxicology, vol. 39, no. 12, pp. 1279–1283, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. E. S. Cho, K. W. Lee, and H. J. Lee, “Cocoa procyanidins protect PC12 cells from hydrogen-peroxide-induced apoptosis by inhibiting activation of p38 MAPK and JNK,” Mutation Research, vol. 640, no. 1-2, pp. 123–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. I. Rodríguez-Ramiro, S. Ramos, E. López-Oliva et al., “Cocoa-rich diet prevents azoxymethane-induced colonic preneoplastic lesions in rats by restraining oxidative stress and cell proliferation and inducing apoptosis,” Molecular Nutrition and Food Research, vol. 55, no. 12, pp. 1895–1899, 2011. View at Google Scholar
  83. M. A. Martín, S. Ramos, R. Mateos et al., “Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract,” Journal of Agricultural and Food Chemistry, vol. 56, no. 17, pp. 7765–7772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. D. E. Lee, N. J. Kang, K. M. Lee et al., “Cocoa polyphenols attenuate hydrogen peroxide-induced inhibition of gap-junction intercellular communication by blocking phosphorylation of connexin 43 via the MEK/ERK signaling pathway,” The Journal of Nutritional Biochemistry, vol. 21, no. 8, pp. 680–686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Carnésecchi, Y. Schneider, S. A. Lazarus, D. Coehlo, F. Gossé, and F. Raul, “Flavanols and procyanidins of cocoa and chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells,” Cancer Letters, vol. 175, no. 2, pp. 147–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Ohno, K. Q. Sakamoto, M. Ishizuka, and S. Fujita, “Crude cacao Theobroma cacao extract reduces mutagenicity induced by benzo[a]pyrene through inhibition of CYP1A activity in vitro,” Phytotherapy Research, vol. 23, no. 8, pp. 1134–1139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Oleaga, M. García, A. Solé, C. J. Ciudad, M. Izquierdo-Pulido, and V. Noé, “CYP1A1 is overexpressed upon incubation of breast cancer cells with a polyphenolic cocoa extract,” European Journal of Nutrition, vol. 51, no. 4, pp. 465–476, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. N. J. Kang, K. W. Lee, D. E. Lee et al., “Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase,” The Journal of Biological Chemistry, vol. 283, no. 30, pp. 20664–20673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. J. E. Kim, J. E. Son, S. K. Jung et al., “Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells,” British Journal of Nutrition, vol. 104, no. 7, pp. 957–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. G. F. Ferrazzano, I. Amato, A. Ingenito, A. de Natale, and A. Pollio, “Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea),” Fitoterapia, vol. 80, no. 5, pp. 255–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Tomofuji, D. Ekuni, K. Irie et al., “Preventive effects of a cocoa-enriched diet on gingival oxidative stress in experimental periodontitis,” Journal of Periodontology, vol. 80, no. 11, pp. 1799–1808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. T. K. Mao, J. van de Water, C. L. Keen, H. H. Schmitz, and M. E. Gershwin, “Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells,” Journal of Medicinal Food, vol. 5, no. 1, pp. 17–22, 2002. View at Google Scholar · View at Scopus
  93. D. L. Katz, K. Doughty, and A. Ali, “Cocoa and chocolate in human health and disease,” Antioxidant and Redox Signaling, vol. 15, no. 10, pp. 2779–2811, 2011. View at Publisher · View at Google Scholar
  94. T. Sathyapalan, S. Beckett, A. S. Rigby, D. D. Mellor, and S. L. Atkin, “High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome,” Nutrition Journal, vol. 9, no. 1, article 55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. F. Bisson, A. Nejdi, P. Rozan, S. Hidalgo, R. Lalonde, and M. Messaoudi, “Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats,” British Journal of Nutrition, vol. 100, no. 1, pp. 94–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. F. K. Addai, “Natural cocoa as diet-mediated antimalarial prophylaxis,” Medical Hypotheses, vol. 74, no. 5, pp. 825–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Gasser, E. Lati, L. Peno-Mazzarino, D. Bouzoud, L. Allegaert, and H. Bernaert, “Cocoa polyphenols and their influence on parameters involved in ex vivo skin restructuring,” International Journal of Cosmetic Science, vol. 30, no. 5, pp. 339–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Mukai, I. Fukuda, S. Nishiumi et al., “Cacao polyphenol extract suppresses transformation of an aryl hydrocarbon receptor in C57BL/6 mice,” Journal of Agricultural and Food Chemistry, vol. 56, no. 21, pp. 10399–10405, 2008. View at Publisher · View at Google Scholar · View at Scopus