Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 921941, 11 pages
http://dx.doi.org/10.1155/2012/921941
Research Article

Quercetin and Sesamin Protect Dopaminergic Cells from MPP+-Induced Neuroinflammation in a Microglial (N9)-Neuronal (PC12) Coculture System

1Department of Biochemistry and the Neuroscience Research Group, Université du Québec, Trois-Rivières, Québec, Canada G9A 5H7
2Neuroscience Research Unit, Centre de Recherche du CHUL, Université Laval, Ste-Foy, Québec, Canada G1V 4G2

Received 9 March 2012; Revised 11 May 2012; Accepted 20 May 2012

Academic Editor: David Vauzour

Copyright © 2012 Julie Bournival et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. McGeer and E. G. McGeer, “Glial reactions in Parkinson's disease,” Movement Disorders, vol. 23, no. 4, pp. 474–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. A. Frankola, N. H. Greig, W. Luo, and D. Tweedie, “Stargeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases,” CNS and Neurological Disorders, vol. 10, no. 3, pp. 391–403, 2011. View at Google Scholar · View at Scopus
  3. L. Qian, P. M. Flood, and J. S. Hong, “Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy,” Journal of Neural Transmission, vol. 117, no. 8, pp. 971–979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Ouchi, S. Yagi, M. Yokokura, and M. Sakamoto, “Neuroinflammation in the living brain of Parkinson's disease,” Parkinsonism and Related Disorders, vol. 15, no. 3, pp. S200–S204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Mirza, H. Hadberg, P. Thomsen, and T. Moos, “The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease,” Neuroscience, vol. 95, no. 2, pp. 425–432, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. E. C. Hirsch and S. Hunot, “Neuroinflammation in Parkinson's disease: a target for neuroprotection?” The Lancet Neurology, vol. 8, no. 4, pp. 382–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. J. Lawson, V. H. Perry, P. Dri, and S. Gordon, “Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain,” Neuroscience, vol. 39, no. 1, pp. 151–170, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. W. G. Kim, R. P. Mohney, B. Wilson, G. H. Jeohn, B. Liu, and J. S. Hong, “Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia,” Journal of Neuroscience, vol. 20, no. 16, pp. 6309–6316, 2000. View at Google Scholar · View at Scopus
  9. S. Hunot, N. Dugas, B. Faucheux et al., “FcεRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells,” Journal of Neuroscience, vol. 19, no. 9, pp. 3440–3447, 1999. View at Google Scholar · View at Scopus
  10. M. Mogi, M. Harada, H. Narabayashi, H. Inagaki, M. Minami, and T. Nagatsu, “Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease,” Neuroscience Letters, vol. 211, no. 1, pp. 13–16, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kohutnicka, E. Lewandowska, I. Kurkowska-Jastrzȩbska, A. Członkowski, and A. Członkowska, “Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),” Immunopharmacology, vol. 39, no. 3, pp. 167–180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Członkowska, M. Kohutnicka, I. Kurkowska-Jastrzȩbska, and A. Członkowski, “Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model,” Neurodegeneration, vol. 5, no. 2, pp. 137–143, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Sriram, D. B. Miller, and J. P. O'Callaghan, “Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-α,” Journal of Neurochemistry, vol. 96, no. 3, pp. 706–718, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Segura-Aguilar and R. M. Kostrzewa, “Neurotoxins and neurotoxic species implicated in neurodegeneration,” Neurotoxicity Research, vol. 6, no. 7-8, pp. 615–630, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Zhang, V. L. Dawson, and T. M. Dawson, “Oxidative stress and genetics in the pathogenesis of parkinson's disease,” Neurobiology of Disease, vol. 7, no. 4, pp. 240–250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Obata, “Nitric oxide and MPP+-induced hydroxyl radical generation,” Journal of Neural Transmission, vol. 113, no. 9, pp. 1131–1144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. Langston, L. S. Forno, J. Tetrud, A. G. Reeves, J. A. Kaplan, and D. Karluk, “Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure,” Annals of Neurology, vol. 46, no. 4, pp. 598–605, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Barcia, V. De Pablos, V. Bautista-Hernández et al., “Increased plasma levels of TNF-α but not of IL1-β in MPTP-treated monkeys one year after the MPTP administration,” Parkinsonism and Related Disorders, vol. 11, no. 7, pp. 435–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Zhao, Z. Ling, M. B. Newman, A. Bhatia, and P. M. Carvey, “TNF-α knockout and minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice,” Neurobiology of Disease, vol. 26, no. 1, pp. 36–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. P. Lakshmanan, K. Watanabe, R. A. Thandavarayan et al., “Curcumin attenuates hyperglycaemia-mediated AMPK activation and oxidative stress in cerebrum of streptozotocin-induced diabetic rat,” Free Radical Research, vol. 45, no. 7, pp. 788–795, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Zhang, S. G. Swarts, L. Yin et al., “Antioxidant properties of quercetin,” Advances in Experimental Medicine and Biology, vol. 701, pp. 283–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Singh, M. Arseneault, T. Sanderson, V. Murthy, and C. Ramassamy, “Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms,” Journal of Agricultural and Food Chemistry, vol. 56, no. 13, pp. 4855–4873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. B. Pandey and S. I. Rizvi, “Plant polyphenols as dietary antioxidants in human health and disease,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. D. Mercer, B. L. Kelly, M. K. Horne, and P. M. Beart, “Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures,” Biochemical Pharmacology, vol. 69, no. 2, pp. 339–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Bournival, P. Quessy, and M. G. Martinoli, “Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons,” Cellular and Molecular Neurobiology, vol. 29, no. 8, pp. 1169–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Bureau, F. Longpré, and M. G. Martinoli, “Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation,” Journal of Neuroscience Research, vol. 86, no. 2, pp. 403–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. K. Kao, Y. C. Ou, S. L. Raung, C. Y. Lai, S. L. Liao, and C. J. Chen, “Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia,” Life Sciences, vol. 86, no. 9-10, pp. 315–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Shahidi and P. K. Wanasundara, “Phenolic antioxidants,” Critical Reviews in Food Science and Nutrition, vol. 32, no. 1, pp. 67–103, 1992. View at Google Scholar · View at Scopus
  29. F. Hirata, K. Fujita, Y. Ishikura, K. Hosoda, T. Ishikawa, and H. Nakamura, “Hypocholesterolemic effect of sesame lignan in humans,” Atherosclerosis, vol. 122, no. 1, pp. 135–136, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. C. C. Lee, P. R. Chen, S. Lin et al., “Sesamin induces nitric oxide and decreases endothelin-1 production in HUVECs: possible implications for its antihypertensive effect,” Journal of Hypertension, vol. 22, no. 12, pp. 2329–2338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Noguchi, K. Ikeda, Y. Sasaki et al., “Effects of vitamin E and sesamin on hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats,” Hypertension Research, vol. 24, no. 6, pp. 735–742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Lahaie-Collins, J. Bournival, M. Plouffe, J. Carange, and M. G. Martinoli, “Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress,” Oxidative Medicine and Cellular Longevity, vol. 1, no. 1, pp. 54–62, 2008. View at Google Scholar · View at Scopus
  33. S. Gélinas and M. G. Martinoli, “Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells,” Journal of Neuroscience Research, vol. 70, no. 1, pp. 90–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Q. Li, T. Wang, Z. Pei, B. Liu, and J. S. Hong, “Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons,” Journal of Neural Transmission, vol. 112, no. 3, pp. 331–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Martin and M. Clynes, “Acid phosphatase: endpoint for in vitro toxicity tests,” In Vitro Cellular and Developmental Biology, vol. 27, no. 3, pp. 183–184, 1991. View at Google Scholar · View at Scopus
  36. J. Vandesompele, K. De Preter, F. Pattyn et al., “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes,” Genome Biology, vol. 3, no. 7, p. RESEARCH0034, 2002. View at Google Scholar · View at Scopus
  37. K. Aquilano, S. Baldelli, G. Rotilio, and M. R. Ciriolo, “Role of nitric oxide synthases in Parkinson's disease: a review on the antioxidant and anti-inflammatory activity of polyphenols,” Neurochemical Research, vol. 33, no. 12, pp. 2416–2426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Li, L. Liu, S. W. Barger, R. E. Mrak, and W. S. T. Griffin, “Vitamin E suppression of microglial activation is neuroprotective,” Journal of Neuroscience Research, vol. 66, no. 2, pp. 163–170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Gille, W. D. Rausch, S. T. Hung et al., “Protection of dopaminergic neurons in primary culture by lisuride,” Journal of Neural Transmission, vol. 109, no. 2, pp. 157–169, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Mogi, A. Togari, M. Ogawa et al., “Effects of repeated systemic administration of 1-methyl-4- phenyl1,2,3,6-tetrahydropyridine (MPTP) to mice on interleukin-1β and nerve growth factor in the striatum,” Neuroscience Letters, vol. 250, no. 1, pp. 25–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. R. L. Hunter, N. Dragicevic, K. Seifert et al., “Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system,” Journal of Neurochemistry, vol. 100, no. 5, pp. 1375–1386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Liu, L. Qin, G. Li et al., “Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation,” Journal of Pharmacology and Experimental Therapeutics, vol. 305, no. 1, pp. 212–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. L. Liao, W. Y. Chen, and C. J. Chen, “Estrogen attenuates tumor necrosis factor-α expression to provide ischemic neuroprotection in female rats,” Neuroscience Letters, vol. 330, no. 2, pp. 159–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Joglar, J. Rodriguez-Pallares, A. I. Rodriguez-Perez, P. Rey, M. J. Guerra, and J. L. Labandeira-Garcia, “The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease,” Journal of Neurochemistry, vol. 109, no. 2, pp. 656–669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Villar-Cheda, A. Dominguez-Meijide, B. Joglar, A. I. Rodriguez-Perez, M. J. Guerra, and J. L. Labandeira-Garcia, “Involvement of microglial RhoA/Rho-Kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors,” Neurobiology of Disease, vol. 47, no. 2, pp. 268–279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. F. González-Scarano and G. Baltuch, “Microglia as mediators of inflammatory and degenerative diseases,” Annual Review of Neuroscience, vol. 22, pp. 219–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Chen, X. Q. Tang, J. L. Zhi et al., “Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway,” Apoptosis, vol. 11, no. 6, pp. 943–953, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. R. C. W. Hou, H. M. Huang, J. T. C. Tzen, and K. C. G. Jeng, “Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells,” Journal of Neuroscience Research, vol. 74, no. 1, pp. 123–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. G. T. Liberatore, V. Jackson-Lewis, S. Vukosavic et al., “Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease,” Nature Medicine, vol. 5, no. 12, pp. 1403–1409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Schaffer and B. Halliwell, “Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations,” Genes and Nutrition, vol. 7, no. 2, pp. 99–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Clavel, J. Doré, and M. Blaut, “Bioavailability of lignans in human subjects,” Nutrition Research Reviews, vol. 19, no. 2, pp. 187–196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J. A. Ross and C. M. Kasum, “Dietary flavonoids: bioavailability, metabolic effects, and safety,” Annual Review of Nutrition, vol. 22, pp. 19–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. E. N. Papadakis, D. Lazarou, R. Grougnet et al., “Effect of the form of the sesame-based diet on the absorption of lignans,” British Journal of Nutrition, vol. 100, no. 6, pp. 1213–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Fiorani, A. Accorsi, and O. Cantoni, “Human red blood cells as a natural flavonoid reservoir,” Free Radical Research, vol. 37, no. 12, pp. 1331–1338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. E. M. Janle, M. A. Lila, M. Grannan et al., “Pharmacokinetics and tissue distribution of 14C-Labeled grape polyphenols in the periphery and the central nervous system following oral administration,” Journal of Medicinal Food, vol. 13, no. 4, pp. 926–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. K. A. Youdim, M. Z. Qaiser, D. J. Begley, C. A. Rice-Evans, and N. J. Abbott, “Flavonoid permeability across an in situ model of the blood-brain barrier,” Free Radical Biology and Medicine, vol. 36, no. 5, pp. 592–604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Faria, D. Pestana, D. Teixeira et al., “Insights into the putative catechin and epicatechin transport across blood-brain barrier,” Food and Function, vol. 2, no. 1, pp. 39–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Scheepens, K. Tan, and J. W. Paxton, “Improving the oral bioavailability of beneficial polyphenols through designed synergies,” Genes and Nutrition, vol. 5, no. 1, pp. 75–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Vauzour, A. Rodriguez-Mateos, G. Corona, M. J. Oruna-Concha, and J. P. E. Spencer, “Polyphenols and human health: prevention of disease and mechanisms of action,” Nutrients, vol. 2, no. 11, pp. 1106–1131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. M. Khan, T. Ishrat, A. Ahmad et al., “Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats,” Chemico-Biological Interactions, vol. 183, no. 1, pp. 255–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. P. F. Hsieh, C. W. Hou, P. W. Yao et al., “Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation,” Journal of Neuroinflammation, vol. 8, article 57, 2011. View at Publisher · View at Google Scholar · View at Scopus