Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 156562, 10 pages
http://dx.doi.org/10.1155/2013/156562
Research Article

Malarial Infection of Female BWF1 Lupus Mice Alters the Redox State in Kidney and Liver Tissues and Confers Protection against Lupus Nephritis

1Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
2Zoology Department, Faculty of Science, Cairo University, Cairo 61616, Egypt
3Laboratory of Immunology & Molecular Biology, Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

Received 28 June 2013; Revised 7 September 2013; Accepted 30 September 2013

Academic Editor: Ryuichi Morishita

Copyright © 2013 Saleh Al-Quraishy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Amital and Y. Shoenfeld, “Autoimmunity and autoimmune diseases such as systemic lupus erythematosus,” in Systemic Lupus Erythematosus, G. Lahita Robert, Ed., pp. 3–27, Elsevier, Amsterdam, The Netherlands, 4th edition, 2004. View at Google Scholar
  2. B. T. Kurien, K. Hensley, M. Bachmann, and R. H. Scofield, “Oxidatively modified autoantigens in autoimmune diseases,” Free Radical Biology and Medicine, vol. 41, no. 4, pp. 549–556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Grimsrud, H. Xie, T. J. Griffin, and D. A. Bernlohr, “Oxidative stress and covalent modification of protein with bioactive aldehydes,” Journal of Biological Chemistry, vol. 283, no. 32, pp. 21837–21841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Shah, A. Aggarwal, A. Bhatnagar, R. Kiran, and A. Wanchu, “Association between T lymphocyte sub-sets apoptosis and peripheral blood mononuclear cells oxidative stress in systemic lupus erythematosus,” Free Radical Research, vol. 45, no. 5, pp. 559–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Wang, R. König, G. A. S. Ansari, and M. F. Khan, “Lipid peroxidation-derived aldehyde-protein adducts contribute to trichloroethene-mediated autoimmunity via activation of CD4+ T cells,” Free Radical Biology and Medicine, vol. 44, no. 7, pp. 1475–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Gabler, J. R. Kalden, and H.-M. Lorenz, “The putative role of apoptosis-modified histones for the induction of autoimmunity in Systemic Lupus Erythematosus,” Biochemical Pharmacology, vol. 66, no. 8, pp. 1441–1446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Amoura, J.-C. Piette, H. Chabre et al., “Circulating plasma levels of nucleosomes in patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 40, no. 12, pp. 2217–2225, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. H.-M. Lorenz, M. Herrmann, T. Winkler, U. Gaipl, and J. R. Kalden, “Role of apoptosis in autoimmunity,” Apoptosis, vol. 5, no. 5, pp. 443–449, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Ahsan, A. Ali, and R. Ali, “Oxygen free radicals and systemic autoimmunity,” Clinical and Experimental Immunology, vol. 131, no. 3, pp. 398–404, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. De Waal Malefyt, J. Haanen, H. Spits et al., “Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression,” Journal of Experimental Medicine, vol. 174, no. 4, pp. 915–924, 1991. View at Google Scholar · View at Scopus
  11. H. Ishida, T. Muchamuel, S. Sakaguchi, S. Andrade, S. Menon, and M. Howard, “Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice,” Journal of Experimental Medicine, vol. 179, no. 1, pp. 305–310, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Aringerl, E. Feierl, G. Steiner et al., “Increased bioactive TNF in human systemic lupus erythematosus: associations with cell death,” Lupus, vol. 11, no. 2, pp. 102–108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Kollias, D. Kontoyiannis, E. Douni, and G. Kassiotis, “The role of TNF/TNFR in organ-specific and systemic autoimmunity: implications for the design of optimized “anti-TNF” therapies,” Current Directions in Autoimmunity, vol. 5, pp. 30–50, 2002. View at Google Scholar · View at Scopus
  14. M. Postal and S. Appenzeller, “The role of Tumor Necrosis Factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus,” Cytokine, vol. 56, no. 3, pp. 537–543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Clatworthy, L. Willcocks, B. Urban et al., “Systemic lupus erythematosus-associated defects in the inhibitory receptor FcγRIIb reduce susceptibility to malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7169–7174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. O. Adebajo, “Low frequency of autoimmune disease in tropical Africa,” The Lancet, vol. 349, no. 9048, pp. 361–362, 1997. View at Google Scholar · View at Scopus
  17. N. Minaur, S. Sawyers, J. Parker, and J. Darmawan, “Rheumatic Disease in an Australian Aboriginal Community in North Queensland, Australia. A WHO-ILAR COPCORD Survey,” Journal of Rheumatology, vol. 31, no. 5, pp. 965–972, 2004. View at Google Scholar · View at Scopus
  18. B. Greenwood and T. Corrah, “Systemic lupus erythematosus in African immigrants,” The Lancet, vol. 358, no. 9288, p. 1182, 2001. View at Google Scholar · View at Scopus
  19. G. A. Butcher and I. A. Clark, “SLE and malaria: another look at an old idea,” Parasitology Today, vol. 6, no. 8, pp. 259–261, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Greenwood, E. M. Herrick, and A. Voller, “Suppression of autoimmune disease in NZB and (NZB×NZW)F1 hybrid mice by infection with malaria,” Nature, vol. 226, no. 5242, pp. 266–267, 1970. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Hentati, M. N. Sato, B. Payelle-Brogard, S. Avrameas, and T. Ternynck, “Beneficial effect of polyclonal immunoglobulins from malaria-infected BALB/c mice on the lupus-like syndrome of (NZB'NZW)F1 mice,” European Journal of Immunology, vol. 24, no. 1, pp. 8–15, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Hentati, T. Ternynck, S. Avrameas, and B. Payelle-Brogard, “Comparison of natural antibodies to autoantibodies arising during lupus in (NZB'NZW)F1 mice,” Journal of Autoimmunity, vol. 4, no. 2, pp. 341–356, 1991. View at Publisher · View at Google Scholar · View at Scopus
  23. M. F. Ferreira-da-Cruz, A. Teva, E. C. Espindola-Mendes, L. G. dos Santos, and C. T. Daniel-Ribeiro, “Inactivation of Plasmodium falciparum parasites using gamma-irradiation,” Memórias do Instituto Oswaldo Cruz, vol. 92, no. 1, pp. 137–138, 1997. View at Google Scholar · View at Scopus
  24. S. Tsakiris, K. H. Schulpis, K. Marinou, and P. Behrakis, “Protective effect of L-cysteine and glutathione on the modulated suckling rat brain Na+,K+-ATPase and Mg2+-ATPase activities induced by the in vitro galactosaemia,” Pharmacological Research, vol. 49, no. 5, pp. 475–479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Berkels, S. Purol-Schnabel, and R. Roesen, “Measurement of nitric oxide by reconversion of nitrate/nitrite to NO,” Methods in Molecular Biology, vol. 279, pp. 1–8, 2004. View at Google Scholar · View at Scopus
  26. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Google Scholar · View at Scopus
  27. H. U. Aebi, Methods in Enzymatic Analysis, Academic Press, New York, NY, USA, 1984.
  28. G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959. View at Google Scholar · View at Scopus
  29. S. Sotgiu, A. Angius, A. Embry, G. Rosati, and S. Musumeci, “Hygiene hypothesis: innate immunity, malaria and multiple sclerosis,” Medical Hypotheses, vol. 70, no. 4, pp. 819–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. L. Graham, J. A. O'Donnell, Y. Tan et al., “Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset,” Journal of Virology, vol. 81, no. 12, pp. 6446–6458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Chen, F. Aosai, K. Norose et al., “Toxoplasma gondii infection inhibits the development of lupus-like syndrome in autoimmune (New Zealand Black x New Zealand White) F1 mice,” International Immunology, vol. 16, no. 7, pp. 937–946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Tewthanom, S. Janwityanuchit, K. Totemchockchyakarn, and D. Panomvana, “Correlation of lipid peroxidation and glutathione levels with severity of systemic Lupus Erythematosus: a pilot study from single center,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 11, no. 3, pp. 30–34, 2008. View at Google Scholar · View at Scopus
  33. S. Túri, I. Németh, A. Torkos et al., “Oxidative stress and antioxidant defense mechanism in glomerular diseases,” Free Radical Biology and Medicine, vol. 22, no. 1-2, pp. 161–168, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Franco and J. A. Cidlowski, “Apoptosis and glutathione: beyond an antioxidant,” Cell Death and Differentiation, vol. 16, no. 10, pp. 1303–1314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. L. Circu and T. Y. Aw, “Reactive oxygen species, cellular redox systems, and apoptosis,” Free Radical Biology and Medicine, vol. 48, no. 6, pp. 749–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. M. Elias, M. Correa-Costa, C. R. Barreto et al., “Oxidative stress and modification of renal vascular permeability are associated with acute kidney injury during P. berghei ANKA infection,” PLoS ONE, vol. 7, no. 8, Article ID e44004, 2012. View at Google Scholar
  37. D. K. Kochar, P. Agarwal, S. K. Kochar et al., “Hepatocyte dysfunction and hepatic encephalopathy in Plasmodium falciparum malaria,” QJM, vol. 96, no. 7, pp. 505–512, 2003. View at Google Scholar · View at Scopus
  38. S. Wilson, B. J. Vennervald, and D. W. Dunne, “Chronic hepatosplenomegaly in African school children: a common but neglected morbidity associated with schistosomiasis and malaria,” PLoS Neglected Tropical Diseases, vol. 10, article 1371, 2011. View at Google Scholar
  39. M. Aringer and J. S. Smolen, “Tumour necrosis factor and other proinflammatory cytokines in systemic lupus erythematosus: a rationale for therapeutic intervention,” Lupus, vol. 13, no. 5, pp. 344–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Aringer and J. S. Smolen, “The role of tumor necrosis factor-alpha in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 10, no. 1, article 202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. K. R. M. Blenman, B. Duan, Z. Xu et al., “IL-10 regulation of lupus in the NZM2410 murine model,” Laboratory Investigation, vol. 86, no. 11, pp. 1136–1148, 2006. View at Publisher · View at Google Scholar · View at Scopus