Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 185715, 8 pages
http://dx.doi.org/10.1155/2013/185715
Research Article

Resolvin D1 Reverts Lipopolysaccharide-Induced TJ Proteins Disruption and the Increase of Cellular Permeability by Regulating I κBα Signaling in Human Vascular Endothelial Cells

1Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
2Department of Anesthesiology, Ningbo First Hospital, Ningbo 315010, China

Received 2 August 2013; Revised 29 September 2013; Accepted 30 September 2013

Academic Editor: Zhengyuan Xia

Copyright © 2013 Xingcai Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Dudek and J. G. N. Garcia, “Cytoskeletal regulation of pulmonary vascular permeability,” Journal of Applied Physiology, vol. 91, no. 4, pp. 1487–1500, 2001. View at Google Scholar · View at Scopus
  2. H. Lum and A. B. Malik, “Mechanisms of increased endothelial permeability,” Canadian Journal of Physiology and Pharmacology, vol. 74, no. 7, pp. 787–800, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. N. V. Bogatcheva and A. D. Verin, “Reprint of “The role of cytoskeleton in the regulation of vascular endothelial barrier function” [Microvascular Research 76 (2008) 202–207],” Microvascular Research, vol. 77, no. 1, pp. 64–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Matter and M. S. Balda, “Signalling to and from tight junctions,” Nature Reviews Molecular Cell Biology, vol. 4, no. 3, pp. 225–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. van Itallie, A. S. Fanning, A. Bridges, and J. M. Anderson, “ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton,” Molecular Biology of the Cell, vol. 20, no. 17, pp. 3930–3940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Fanning and J. M. Anderson, “Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions,” Annals of the New York Academy of Sciences, vol. 1165, pp. 113–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hamada, Y. Shitara, S. Sekine, and T. Horie, “Zonula Occludens-1 alterations and enhanced intestinal permeability in methotrexate-treated rats,” Cancer Chemotherapy and Pharmacology, vol. 66, no. 6, pp. 1031–1038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. S. Harhaj and D. A. Antonetti, “Regulation of tight junctions and loss of barrier function in pathophysiology,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 7, pp. 1206–1237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Hong, K. Gronert, P. R. Devchand, R.-L. Moussignac, and C. N. Serhan, “Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: autacoids in anti-inflammation,” Journal of Biological Chemistry, vol. 278, no. 17, pp. 14677–14687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. N. Serhan, S. Hong, K. Gronert et al., “Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals,” Journal of Experimental Medicine, vol. 196, no. 8, pp. 1025–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Chiang, G. Fredman, F. Bäckhed et al., “Infection regulates pro-resolving mediators that lower antibiotic requirements,” Nature, vol. 484, no. 7395, pp. 524–528, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Wang, X. Gong, J.-Y. Wan et al., “Resolvin D1 protects mice from LPS-induced acute lung injury,” Pulmonary Pharmacology and Therapeutics, vol. 24, no. 4, pp. 434–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. G. Kevil, T. Oshima, B. Alexander, L. L. Coe, and J. S. Alexander, “H2O2-mediated permeability: role of MAPK and occludin,” The American Journal of Physiology—Cell Physiology, vol. 279, no. 1, pp. C21–C30, 2000. View at Google Scholar · View at Scopus
  14. D. Li and R. J. Mrsny, “Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin,” Journal of Cell Biology, vol. 148, no. 4, pp. 791–800, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Recchiuti, S. Krishnamoorthy, G. Fredman, N. Chiang, and C. N. Serhan, “MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits,” The FASEB Journal, vol. 25, no. 2, pp. 544–560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. H. Kim and J.-S. Bae, “Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells,” Food and Chemical Toxicology, vol. 48, no. 6, pp. 1682–1687, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. C. Chin, A. N. Flynn, J. P. Fedwick, and A. G. Buret, “The role of caspase-3 in lipopolysaccharide-mediated disruption of intestinal epithelial tight junctions,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 10, pp. 1043–1050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Sheth, N. Delos Santos, A. Seth, N. F. LaRusso, and R. K. Rao, “Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 293, no. 1, pp. G308–G318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Fredman and C. N. Serhan, “Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution,” Biochemical Journal, vol. 437, no. 2, pp. 185–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Kumar, Q. Shen, C. D. Pivetti, E. S. Lee, M. H. Wu, and S. Y. Yuan, “Molecular mechanisms of endothelial hyperpermeability: implications in inflammation,” Expert Reviews in Molecular Medicine, vol. 11, article e19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. E. Medvedev, K. M. Kopydlowski, and S. N. Vogel, “Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and Toll-like receptor 2 and 4 gene expression,” Journal of Immunology, vol. 164, no. 11, pp. 5564–5574, 2000. View at Google Scholar · View at Scopus
  22. R. Settimio, D. F. Clara, F. Franca, S. Francesca, and D. Michele, “Resolvin D1 reduces the immunoinflammatory response of the rat eye following uveitis,” Mediators of Inflammation, vol. 2012, Article ID 318621, 9 pages, 2012. View at Publisher · View at Google Scholar
  23. Y. Jin, M. Arita, Q. Zhang et al., “Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators,” Investigative Ophthalmology and Visual Science, vol. 50, no. 10, pp. 4743–4752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. P. van Nieuw Amerongen, C. M. L. Beckers, I. D. Achekar, S. Zeeman, R. J. P. Musters, and V. W. M. van Hinsbergh, “Involvement of Rho kinase in endothelial barrier maintenance,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2332–2339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Furuse, T. Hirase, M. Itoh et al., “Occludin: a novel integral membrane protein localizing at tight junctions,” Journal of Cell Biology, vol. 123, no. 6, pp. 1777–1788, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Al-Sadi, K. Khatib, S. Guo, D. Ye, M. Youssef, and T. Ma, “Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 300, no. 6, pp. G1054–G1064, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. T. Hawkins and T. P. Davis, “The blood-brain barrier/neurovascular unit in health and disease,” Pharmacological Reviews, vol. 57, no. 2, pp. 173–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. S. L. Yu, K. M. McCarthy, S. A. Francis et al., “Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells,” The American Journal of Physiology—Cell Physiology, vol. 288, no. 6, pp. C1231–C1241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Saitou, K. Fujimoto, Y. Doi et al., “Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions,” Journal of Cell Biology, vol. 141, no. 2, pp. 397–408, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. A. S. Fanning, B. J. Jameson, L. A. Jesaitis, and J. M. Anderson, “The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton,” Journal of Biological Chemistry, vol. 273, no. 45, pp. 29745–29753, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. H. A. Edens and C. A. Parkos, “Modulation of epithelial and endothelial paracellular permeability by leukocytes,” Advanced Drug Delivery Reviews, vol. 41, no. 3, pp. 315–328, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. J.-D. Schulzke and M. Fromm, “Tight junctions: molecular structure meets function,” Annals of the New York Academy of Sciences, vol. 1165, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Krishnamoorthy, A. Recchiuti, N. Chiang et al., “Resolvin D1 binds human phagocytes with evidence for proresolving receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1660–1665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Fu, A. A. Birukova, J. Xing et al., “Amifostine reduces lung vascular permeability via suppression of inflammatory signalling,” European Respiratory Journal, vol. 33, no. 3, pp. 612–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Ahdieh, T. Vandenbos, and A. Youakim, “Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-γ,” The American Journal of Physiology—Cell Physiology, vol. 281, no. 6, pp. C2029–C2038, 2001. View at Google Scholar · View at Scopus
  36. T. Oshima, F. S. Laroux, L. L. Coe et al., “Interferon-gamma and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function,” Microvascular Research, vol. 61, pp. 130–143, 2001. View at Google Scholar
  37. A. Youakim and M. Ahdieh, “Interferon-γ decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 276, no. 5, pp. G1279–G1288, 1999. View at Google Scholar · View at Scopus
  38. B. D. Levy, “Resolvin D1 and resolvin E1 promote the resolution of allergic airway inflammation via shared and distinct molecular counter-regulatory pathways,” Frontiers in Immunology, vol. 3, article 390, 2012. View at Publisher · View at Google Scholar
  39. P. A. Baeuerle and D. Baltimore, “Nf-κB: ten years after,” Cell, vol. 87, no. 1, pp. 13–20, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. S.-Q. Wu and W. C. Aird, “Thrombin, TNF-α, and LPS exert overlapping but nonidentical effects on gene expression in endothelial cells and vascular smooth muscle cells,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 289, no. 2, pp. H873–H885, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. M. Opal, “The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis,” International Journal of Medical Microbiology, vol. 297, no. 5, pp. 365–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Y. Ma, G. K. Iwamoto, N. T. Hoa et al., “TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 286, no. 3, pp. G367–G376, 2004. View at Google Scholar · View at Scopus
  43. S. Gerondakis, R. Grumont, R. Gugasyan et al., “Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models,” Oncogene, vol. 25, no. 51, pp. 6781–6799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C. C. Taggart, C. M. Greene, N. G. McElvaney, and S. O'Neill, “Secretory leucoprotease inhibitor prevents lipopolysaccharide-induced IκBα degradation without affecting phosphorylation or ubiquitination,” Journal of Biological Chemistry, vol. 277, no. 37, pp. 33648–33653, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. M. Kyriakis and J. Avruch, “Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation,” Physiological Reviews, vol. 81, no. 2, pp. 807–869, 2001. View at Google Scholar · View at Scopus
  46. X.-J. Yi, Y. Wang, and F.-S. X. Yu, “Corneal epithelial tight junctions and their response to lipopolysaccharide challenge,” Investigative Ophthalmology and Visual Science, vol. 41, no. 13, pp. 4093–4100, 2000. View at Google Scholar · View at Scopus
  47. H. Eutamene, V. Theodorou, F. Schmidlin et al., “LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK,” European Respiratory Journal, vol. 25, no. 5, pp. 789–796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. V. B. Serikov, H. Choi, K. Schmiel et al., “Endotoxin induces leukocyte transmigration and changes in permeability of the airway epithelium via protein-kinase C and extracellular regulated kinase activation,” Journal of Endotoxin Research, vol. 10, no. 1, pp. 55–65, 2004. View at Publisher · View at Google Scholar · View at Scopus