Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 517045, 9 pages
http://dx.doi.org/10.1155/2013/517045
Research Article

The Effect of Alpha-Lipoic Acid on Mitochondrial Superoxide and Glucocorticoid-Induced Hypertension

1Department of Renal Medicine, St George Hospital, Kogarah, NSW 2217, Australia
2Department of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
3John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
4Cardiovascular Research Unit, The Canberra Hospital, Canberra, ACT 2605, Australia

Received 11 July 2012; Accepted 4 January 2013

Academic Editor: Jose Magalhaes

Copyright © 2013 Sharon L. H. Ong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Whitworth, G. J. Mangos, and J. J. Kelly, “Cushing, cortisol, and cardiovascular disease,” Hypertension, vol. 36, no. 5, pp. 912–916, 2000. View at Google Scholar · View at Scopus
  2. S. L. H. Ong, Y. Zhang, and J. A. Whitworth, “Reactive oxygen species and glucocorticoid-induced hypertension,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 4, pp. 477–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Zhang, R. Jang, T. A. Mori et al., “The anti-oxidant Tempol reverses and partially prevents adrenocorticotrophic hormone-induced hypertension in the rat,” Journal of Hypertension, vol. 21, no. 8, pp. 1513–1518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Zhang, K. D. Croft, T. A. Mori, C. G. Schyvens, K. U. S. McKenzie, and J. A. Whitworth, “The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat,” American Journal of Hypertension, vol. 17, no. 3, pp. 260–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. K. Mondo, Y. Zhang, V. De Macedo Possamai et al., “N-acetylcysteine antagonizes the development but does not reverse ACTH-induced hypertension in the rat,” Clinical and Experimental Hypertension, vol. 28, no. 2, pp. 73–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Krug, Y. Zhang, T. A. Mori et al., “N-acetylcysteine prevents but does not reverse dexamethasone-induced hypertension,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 8, pp. 979–981, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Miao, Y. Zhang, P. S. Lim et al., “Acid prevents and partially reverses glucocorticoid-induced hypertension in the rat,” American Journal of Hypertension, vol. 20, no. 3, pp. 304–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Zhang, M. M. K. Chan, M. C. Andrews et al., “Apocynin but not allopurinol prevents and reverses adrenocorticotropic hormone-induced hypertension in the rat,” American Journal of Hypertension, vol. 18, no. 7, pp. 910–916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Hu, Y. Zhang, P. S. Lim et al., “Apocynin but not L-arginine prevents and reverses dexamethasone-induced hypertension in the rat,” American Journal of Hypertension, vol. 19, no. 4, pp. 413–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. H. Ong, J. J. Vickers, Y. Zhang et al., “Role of xanthine oxidase in dexamethasone-induced hypertension in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 5-6, pp. 517–519, 2007. View at Publisher · View at Google Scholar
  11. Y. Zhang, Y. Miao, and J. A. Whitworth, “Aspirin prevents and partially reverses adrenocorticotropic hormone-induced hypertension in the rat,” American Journal of Hypertension, vol. 20, no. 11, pp. 1222–1228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Zhang, T. Pang, J. Earl et al., “Role of tetrahydrobiopterin in adrenocorticotropic hormone-induced hypertension in the rat,” Clinical and Experimental Hypertension, vol. 26, no. 3, pp. 231–241, 2004. View at Publisher · View at Google Scholar
  13. C. Richter, “Do mitochondrial DNA fragments promote cancer and aging?” FEBS Letters, vol. 241, no. 1-2, pp. 1–5, 1988. View at Google Scholar · View at Scopus
  14. G. Lenaz, “Role of mitochondria in oxidative stress and ageing,” Biochimica et Biophysica Acta, vol. 1366, no. 1-2, pp. 53–67, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. F. L. Muller, Y. Liu, and H. Van Remmen, “Complex III releases superoxide to both sides of the inner mitochondrial membrane,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 49064–49073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Marangon, S. Devaraj, O. Tirosh, L. Packer, and I. Jialal, “Comparison of the effect of α-lipoic acid and α-tocopherol supplementation on measures of oxidative stress,” Free Radical Biology and Medicine, vol. 27, no. 9-10, pp. 1114–1121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Vanasco, M. C. Cimolai, P. Evelson, and S. Alvarez, “The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by α-lipoic acid,” Free Radical Research, vol. 42, no. 9, pp. 815–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Distelmaier, W. J. H. Koopman, E. R. Testa et al., “Life cell quantification of mitochondrial membrane potential at the single organelle level,” Cytometry A, vol. 73, no. 2, pp. 129–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. M. Hagen, R. T. Ingersoll, J. Lykkesfeldt et al., “(R)-α-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate,” The FASEB Journal, vol. 13, no. 2, pp. 411–418, 1999. View at Google Scholar · View at Scopus
  20. A. El Midaoui, A. Elimadi, L. Wu, P. S. Haddad, and J. De Champlain, “Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production,” American Journal of Hypertension, vol. 16, no. 3, pp. 173–179, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Rodriguez-Iturbe, L. Sepassi, Y. Quiroz, Z. Ni, and N. D. Vaziri, “Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence,” Journal of Applied Physiology, vol. 102, no. 1, pp. 255–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. A. Mori, K. D. Croft, I. B. Puddey, and L. J. Beilin, “An improved method for the measurement of urinary and plasma F2- isoprostanes using gas chromatography-mass spectrometry,” Analytical Biochemistry, vol. 268, no. 1, pp. 117–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. G. P. Biewenga, G. R. M. M. Haenen, and A. Bast, “The pharmacology of the antioxidant: lipoic acid,” General Pharmacology, vol. 29, no. 3, pp. 315–331, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. I. Zhang, H. Y. Jason, J. A. Janine et al., “The role of 20-hydroxyeicosatetraenoic acid in glucocorticoid-induced hypertension,” Journal of Hypertension, vol. 27, no. 8, pp. 1609–1616, 2009. View at Publisher · View at Google Scholar
  25. H. Nohl, L. Gille, and K. Staniek, “Intracellular generation of reactive oxygen species by mitochondria,” Biochemical Pharmacology, vol. 69, no. 5, pp. 719–723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Duranteau, N. S. Chandel, A. Kulisz, Z. Shao, and P. T. Schumacker, “Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes,” Journal of Biological Chemistry, vol. 273, no. 19, pp. 11619–11624, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. T. L. Vanden Hoek, Z. Shao, C. Li, P. T. Schumacker, and L. B. Becker, “Mitochondrial electron transport can become a significant source of oxidative injury in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 29, no. 9, pp. 2441–2450, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. T. L. Dawson, G. J. Gores, A. L. Nieminen, B. Herman, and J. J. Lemasters, “Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes,” American Journal of Physiology, vol. 264, no. 4, pp. C961–C967, 1993. View at Google Scholar · View at Scopus
  29. C. Wen, T. Fraser, M. Li, S. W. Turner, and J. A. Whitworth, “Haemodynamic mechanisms of corticotropin (ACTH)-induced hypertension in the rat,” Journal of Hypertension, vol. 17, no. 12, part 1, pp. 1715–1723, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Wen, T. Fraser, M. Li, and J. A. Whitworth, “Hemodynamic profile of corticotropin-induced hypertension in the rat,” Journal of Hypertension, vol. 16, no. 2, pp. 187–194, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. K. Lou, C. Wen, M. Li et al., “Decreased renal expression of nitric oxide synthase isoforms in adrenocorticotropin-induced and corticosterone-induced hypertension,” Hypertension, vol. 37, no. 4, pp. 1164–1170, 2001. View at Google Scholar · View at Scopus
  32. U. Çakatay, “Pro-oxidant actions of α-lipoic acid and dihydrolipoic acid,” Medical Hypotheses, vol. 66, no. 1, pp. 110–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Moini, L. Packer, and N. E. L. Saris, “Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid,” Toxicology and Applied Pharmacology, vol. 182, no. 1, pp. 84–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Han, F. Antunes, R. Canali, D. Rettori, and E. Cadenas, “Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5557–5563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. X. M. Sun, D. Dinsdale, R. T. Snowden, G. M. Cohen, and D. N. Skilleter, “Characterization of apoptosis in thymocytes isolated from dexamethasone-treated rats,” Biochemical Pharmacology, vol. 44, no. 11, pp. 2131–2137, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Zavitsanou, V. Nguyen, I. Greguric, J. Chapman, P. Ballantyne, and A. Katsifis, “Detection of apoptotic cell death in the thymus of dexamethasone treated rats using [123I]Annexin V and in situ oligonucleotide ligation,” Journal of Molecular Histology, vol. 38, no. 4, pp. 313–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Munusamy and L. A. MacMillan-Crow, “Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells,” Free Radical Biology and Medicine, vol. 46, no. 8, pp. 1149–1157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Terzolo, B. Allasino, S. Bosio et al., “Hyperhomocysteinemia in patients with Cushing's syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 3745–3751, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Faggiano, R. Pivonello, S. Spiezia et al., “Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing's disease during active disease and 1 year after disease remission,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 6, pp. 2527–2533, 2003. View at Google Scholar · View at Scopus
  40. A. El Midaoui, R. Wu, and J. De Champlain, “Prevention of hypertension, hyperglycemia and vascular oxidative stress by aspirin treatment in chronically glucose-fed rats,” Journal of Hypertension, vol. 20, no. 7, pp. 1407–1412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Amudha, A. Josephine, V. Sudhahar, and P. Varalakshmi, “Protective effect of lipoic acid on oxidative and peroxidative damage in cyclosporine A-induced renal toxicity,” International Immunopharmacology, vol. 7, no. 11, pp. 1442–1449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Marley, “Lipoic acid prevents development of the hyperdynamic circulation in anesthetized rats with biliary cirrhosis,” Hepatology, vol. 29, no. 5, pp. 1358–1363, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Wallerath, K. Witte, S. C. Schäfer et al., “Down-regulation of the expression of endothelial NO synthase is likely to contribute to qlucocorticoid-mediated hypertension,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13357–13362, 1999. View at Google Scholar · View at Scopus