Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 680545, 8 pages
http://dx.doi.org/10.1155/2013/680545
Research Article

Tetrahydroxystilbene Glucoside Attenuates Neuroinflammation through the Inhibition of Microglia Activation

1Department of Pharmacology and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
2Pharmacy School, Zunyi Medical University, Zunyi, Guizhou 563099, China

Received 7 August 2013; Revised 9 October 2013; Accepted 11 October 2013

Academic Editor: Felipe Dal-Pizzol

Copyright © 2013 Feng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Hanisch and H. Kettenmann, “Microglia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Nimmo and R. Vink, “Recent patents in CNS drug discovery: the management of inflammation in the central nervous system,” Recent Patents on CNS Drug Discovery, vol. 4, no. 2, pp. 86–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Block, L. Zecca, and J. Hong, “Microglia-mediated neurotoxicity: uncovering the molecular mechanisms,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 57–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sugama, “Stress-induced microglial activation may facilitate the progression of neurodegenerative disorders,” Medical Hypotheses, vol. 73, no. 6, pp. 1031–1034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. M. Gao, B. Liu, W. Zhang, and J. S. Hong, “Novel anti-inflammatory therapy for Parkinson's disease,” Trends in Pharmacological Sciences, vol. 24, no. 8, pp. 395–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Block and J. Hong, “Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism,” Progress in Neurobiology, vol. 76, no. 2, pp. 77–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. M. Gao and J. S. Hong, “Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression,” Trends in Immunology, vol. 29, no. 8, pp. 357–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Chang, J. H. Xiao, Y. Wang, Y. L. Yan, J. Yang, and J. L. Wang, “2, 3, 5, 4'-Tetrahydroxystilbene-2-O-beta-D-glucoside improves gastrointestinal motility disorders in STZ-induced diabetic mice,” PLoS ONE, vol. 7, no. 12, Article ID e50291, 2012. View at Google Scholar
  9. W. Yao, W. Fan, C. Huang, H. Zhong, X. Chen, and W. Zhang, “Proteomic analysis for anti-atherosclerotic effect of tetrahydroxystilbene glucoside in rats,” Biomedicine and Pharmacotherapy, vol. 67, no. 2, pp. 140–145, 2013. View at Publisher · View at Google Scholar
  10. T. Wang, J. Gu, P. Wu et al., “Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation,” Free Radical Biology and Medicine, vol. 47, no. 3, pp. 229–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Zhou, Y. Hou, Q. Yang et al., “Tetrahydroxystilbene glucoside improves the learning and memory of amyloid-β(1–42)-injected rats and may be connected to synaptic changes in the hippocampus,” Canadian Journal of Physiology and Pharmacology, vol. 90, no. 11, pp. 1446–1455, 2012. View at Google Scholar
  12. L. Zhang, S. Yu, R. Zhang, Y. Xing, Y. Li, and L. Li, “Tetrahydroxystilbene glucoside antagonizes age-related α-synuclein overexpression in the hippocampus of APP transgenic mouse model of Alzheimer's disease,” Restorative Neurology and Neuroscience, vol. 31, no. 1, pp. 41–52, 2013. View at Google Scholar
  13. M. J. Wang, H. Y. Huang, W. F. Chen, H. F. Chang, and J. S. Kuo, “Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor kappaB and MLK3/JNK signaling cascades,” Journal of Neuroinflammation, vol. 7, pp. 99–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Choi, M. K. Lee, S. Y. Lim, S. H. Sung, and Y. C. Kim, “Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1β by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells,” British Journal of Pharmacology, vol. 156, no. 6, pp. 933–940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Cao, P. Li, J. Lu, S. T. Dheen, C. Kaur, and E.-A. Ling, “Nuclear factor-kappaB/p65 responds to changes in the notch signaling pathway in murine BV-2 cells and in amoeboid microglia in postnatal rats treated with the γ-secretase complex blocker DAPT,” Journal of Neuroscience Research, vol. 88, no. 12, pp. 2701–2714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988. View at Google Scholar · View at Scopus
  17. W. Zhang, C. Wang, F. Li, and W. Zhu, “2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside suppresses matrix metalloproteinase expression and inflammation in atherosclerotic rats,” Clinical and Experimental Pharmacology and Physiology, vol. 35, no. 3, pp. 310–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-Z. Zhang, J.-F. Shen, J.-Y. Xu, J.-H. Xiao, and J.-L. Wang, “Inhibitory effects of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D- glucoside on experimental inflammation and cyclooxygenase 2 activity,” Journal of Asian Natural Products Research, vol. 9, no. 4, pp. 355–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. W. G. Kim, R. P. Mohney, B. Wilson, G. H. Jeohn, B. Liu, and J. S. Hong, “Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia,” Journal of Neuroscience, vol. 20, no. 16, pp. 6309–6316, 2000. View at Google Scholar · View at Scopus
  20. S. J. Gustafson, K. L. Dunlap, C. M. McGill, and T. B. Kuhn, “A nonpolar blueberry fraction blunts NADPH oxidase activation in neuronal cells exposed to tumor necrosis factor-α,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 768101, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Liu and J. Hong, “Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention,” Journal of Pharmacology and Experimental Therapeutics, vol. 304, no. 1, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Uttara, A. V. Singh, P. Zamboni, and R. T. Mahajan, “Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options,” Current Neuropharmacology, vol. 7, no. 1, pp. 65–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Qin, Y. Liu, T. Wang et al., “NADPH Oxidase Mediates Lipopolysaccharide-induced Neurotoxicity and Proinflammatory Gene Expression in Activated Microglia,” Journal of Biological Chemistry, vol. 279, no. 2, pp. 1415–1421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. H. M. Gao, J. Jiang, B. Wilson, W. Zhang, J. S. Hong, and B. Liu, “Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease,” Journal of Neurochemistry, vol. 81, no. 6, pp. 1285–1297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. Hernandes and L. R. Britto, “NADPH Oxidase and Neurodegeneration,” Current Neuropharmacology, vol. 10, no. 4, pp. 321–327, 2012. View at Google Scholar
  26. D. W. Infanger, R. V. Sharma, and R. L. Davisson, “NADPH oxidases of the brain: distribution, regulation, and function,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1583–1596, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Gao, H. Zhou, F. Zhang, B. C. Wilson, W. Kam, and J. S. Hong, “HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration,” Journal of Neuroscience, vol. 31, no. 3, pp. 1081–1092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Tao, X. Li, L. Zhang et al., “Protective effect of tetrahydroxystilbene glucoside on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway,” PLoS ONE, vol. 6, no. 10, Article ID e26055, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. S. Hayden and S. Ghosh, “Signaling to NF-kappaB,” Genes and Development, vol. 18, no. 18, pp. 2195–2224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Suh and A. B. Rabson, “NF-kappaB activation in human prostate cancer: important mediator or epiphenomenon?” Journal of Cellular Biochemistry, vol. 91, no. 1, pp. 100–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Hunot, B. Brugg, D. Ricard et al., “Nuclear translocation of NF-kappab is increased in dopaminergic neurons of patients with Parkinson disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7531–7536, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Ghosh, A. Roy, X. Liu et al., “Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18754–18759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Xing, M. Liu, and G. Bing, “Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity,” Journal of Neuroimmunology, vol. 192, no. 1-2, pp. 89–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Ramanan, M. Kooshki, W. Zhao, F. Hsu, and M. E. Robbins, “PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways,” Free Radical Biology and Medicine, vol. 45, no. 12, pp. 1695–1704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. M. Gao, H. Zhou, and J. S. Hong, “NADPH oxidases: novel therapeutic targets for neurodegenerative diseases,” Trends in Pharmacological Sciences, vol. 33, no. 6, pp. 295–303, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Pawate, Q. Shen, F. Fan, and N. R. Bhat, “Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma,” Journal of Neuroscience Research, vol. 77, no. 4, pp. 540–551, 2004. View at Publisher · View at Google Scholar · View at Scopus