Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 743938, 7 pages
http://dx.doi.org/10.1155/2013/743938
Research Article

Neuroprotective Effect of Tea Polyphenols on Oxyhemoglobin Induced Subarachnoid Hemorrhage in Mice

1Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
2School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
3Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, China

Received 4 May 2013; Accepted 15 May 2013

Academic Editor: Renata Santos

Copyright © 2013 Haizhen Mo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Weinreb, S. Mandel, T. Amit, and M. B. H. Youdim, “Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases,” Journal of Nutritional Biochemistry, vol. 15, no. 9, pp. 506–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. B. A. Sutherland, R. M. A. Rahman, and I. Appleton, “Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration,” Journal of Nutritional Biochemistry, vol. 17, no. 5, pp. 291–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kuriyama, A. Hozawa, K. Ohmori et al., “Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project,” American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 355–361, 2006. View at Google Scholar · View at Scopus
  4. B. E. Sumpio, A. C. Cordova, D. W. Berke-Schlessel, F. Qin, and Q. H. Chen, “Green tea, the “Asian Paradox,” and cardiovascular disease,” Journal of the American College of Surgeons, vol. 202, no. 5, pp. 813–825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. Bederson, E. S. Connolly Jr., H. H. Batjer et al., “Guidelines for the management of aneurismal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the stroke council, American Heart Association,” Stroke, vol. 40, no. 3, pp. 994–1025, 2009. View at Google Scholar
  6. A. Alaraj, F. T. Charbel, and S. Amin-Hanjani, “Peri-operative measures for treatment and prevention of cerebral vasospasm following subarachnoid hemorrhage,” Neurological Research, vol. 31, no. 6, pp. 651–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. J. Cahill, J. H. Calvert, and J. H. Zhang, “Mechanisms of early brain injury after subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 11, pp. 1341–1353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yatsushige, R. P. Ostrowski, T. Tsubokawa, A. Colohan, and J. H. Zhang, “Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage,” Journal of Neuroscience Research, vol. 85, no. 7, pp. 1436–1448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Park, M. Yamaguchi, C. Zhou, J. W. Calvert, J. Tang, and J. H. Zhang, “Neurovascular protection reduces early brain injury after subarachnoid hemorrhage,” Stroke, vol. 35, no. 10, pp. 2412–2417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Cahill, J. W. Calvert, S. Marcantonio, and J. H. Zhang, “p53 may play an orchestrating role in apoptotic cell death after experimental subarachnoid hemorrhage,” Neurosurgery, vol. 60, no. 3, pp. 531–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Fiskum, R. E. Rosenthal, V. Vereczki et al., “Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 4, pp. 347–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Marchi, C. Giorgi, and J. M. Suski, “Mitochondria-ros crosstalk in the control of cell death and aging,” Journal of Signal Transduction, vol. 2012, Article ID 329635, 17 pages, 2012. View at Publisher · View at Google Scholar
  13. C. Mammucari and R. Rizzuto, “Signaling pathways in mitochondrial dysfunction and aging,” Mechanisms of Ageing and Development, vol. 131, no. 7-8, pp. 536–543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. H. Reddy and T. P. Reddy, “Mitochondria as a therapeutic target for aging and neurodegenerative diseases,” Current Alzheimer Research, vol. 8, no. 4, pp. 393–409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. F. A. Sehba, R. M. Pluta, and J. H. Zhang, “Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury,” Molecular Neurobiology, vol. 43, no. 1, pp. 27–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. V. Higdon and B. Frei, “Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions,” Critical Reviews in Food Science and Nutrition, vol. 43, no. 1, pp. 89–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Sasaki, H. Kasuya, H. Onda et al., “Role of p38 mitogen-activated protein kinase on cerebral vasospasm after subarachnoid hemorrhage,” Stroke, vol. 35, no. 6, pp. 1466–1470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Scolaro, D. Delwing-De Lima, J. G. P. Da Cruz, and D. Delwing-Dal Magro, “Mate tea prevents oxidative stress in the blood and hippocampus of rats with acute or chronic ethanol administration,” Oxidative Medicine and Cellular Longevity, Article ID 314758, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Guo, J. Q. Yan, T. B. Yang, X. Q. Yang, E. Bezard, and B. L. Zhao, “Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway,” Biological Psychiatry, vol. 62, no. 12, pp. 1353–1362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Shi, L. Y. Huang, R. Z. Wang et al., “Time course of oxyhemoglobin induces apoptosis in mice brain cells in vivo,” Acta Neurochirurgica, no. 104, pp. 23–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Zhu, C. Chen, D. Ye et al., “Diammonium glycyrrhizinate upregulates PGC-1α and protects against Aβ1-42-induced neurotoxicity,” PLoS ONE, vol. 7, no. 4, Article ID e35823, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. B. K. Singh, M. Tripathi, B. P. Chaudhari, P. K. Pandey, and P. Kakkar, “Natural terpenes prevent mitochondrial dysfunction, oxidative stress and release of apoptotic proteins during nimesulide-hepatotoxicity in rats,” PLoS ONE, vol. 7, no. 4, Article ID e34200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Chen, Q. Zhang, J. Wang et al., “Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction,” Brain Research, vol. 1279, pp. 131–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Xinmin, D. Yunyou, P. Chaosheng et al., “Dexamethasone treatment attenuates early seawater instillation-induced acute lung injury in rabbits,” Pharmacological Research, vol. 53, no. 4, pp. 372–379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Liu, D. B. Kintner, G. Begum et al., “Endoplasmic reticulum Ca2+ signaling and mitochondrial Cyt c release in astrocytes following oxygen and glucose deprivation,” Journal of Neurochemistry, vol. 114, no. 5, pp. 1436–1446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Chen and Q. Kong, “Evaluation of centrosome abnormalities and p53 inactivation in chemical induced hepatocellular carcinogenesis,” Neoplasma, vol. 56, no. 2, pp. 169–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Garcia, S. Wagner, K. F. Liu, X. J. Hu, and J. P. Mohr, “Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation,” Stroke, vol. 26, no. 4, pp. 627–635, 1995. View at Google Scholar · View at Scopus
  28. M. P. Mattson, M. Gleichmann, and A. Cheng, “Mitochondria in Neuroplasticity and Neurological Disorders,” Neuron, vol. 60, no. 5, pp. 748–766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. X. Santos, S. C. Correia, X. Wang et al., “Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning,” International Journal of Clinical and Experimental Pathology, vol. 3, no. 6, pp. 570–581, 2010. View at Google Scholar
  30. R. A. Vaishnav, I. N. Singh, D. M. Miller, and E. D. Hall, “Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function,” Journal of Neurotrauma, vol. 27, no. 7, pp. 1311–1320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Chen and D. C. Chan, “Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases,” Human molecular genetics, vol. 18, no. 2, pp. R169–R176, 2009. View at Google Scholar · View at Scopus
  32. C. H. Jing, L. Wang, P. P. Liu, C. Wu, D. Ruan, and G. Chen, “Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage,” Neuroscience, vol. 213, pp. 144–153, 2012. View at Google Scholar
  33. N. Hail and R. Lotan, “Cancer chemoprevention and mitochondria: targeting apoptosis in transformed cells via the disruption of mitochondrial bioenergetics/redox state,” Molecular Nutrition and Food Research, vol. 53, no. 1, pp. 49–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Gomez-Pinilla and T. T. Nguyen, “Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders,” Nutritional Neuroscience, vol. 15, no. 3, pp. 127–133, 2012. View at Google Scholar
  35. P. H. Reddy, “Mitochondrial dysfunction in aging and Alzheimer's disease: strategies to protect neurons,” Antioxidants and Redox Signaling, vol. 9, no. 10, pp. 1647–1658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science, vol. 305, no. 5684, pp. 626–629, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Cheng, R. H. Kong, L. M. Zhang, and J. N. Zhang, “Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies,” British Journal of Pharmacology, vol. 167, no. 4, pp. 699–719, 2012. View at Google Scholar
  38. D. Chen, F. Gao, B. Li et al., “Parkin mono-ubiquitinates Bcl-2 and regulates autophagy,” Journal of Biological Chemistry, vol. 285, no. 49, pp. 38214–38223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Zhu, X. Wang, F. Xu et al., “The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia,” Cell Death and Differentiation, vol. 12, no. 2, pp. 162–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. P. G. Matz, M. Fujimura, A. Lewen, Y. Morita-Fujimura, and P. H. Chan, “Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate,” Stroke, vol. 32, no. 2, pp. 506–515, 2001. View at Google Scholar · View at Scopus
  41. J. T. Hong, S. R. Ryu, H. J. Kim et al., “Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils,” Brain Research, vol. 888, no. 1, pp. 11–18, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. C. S. Yang, J. D. Lambert, and S. Sang, “Antioxidative and anti-carcinogenic activities of tea polyphenols,” Archives of Toxicology, vol. 83, no. 1, pp. 11–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Bastianetto, S. Krantic, J. G. Chabot, and R. Quirion, “Possible involvement of programmed cell death pathways in the neuro-protective action of polyphenols,” Current Alzheimer Research, vol. 8, no. 5, pp. 445–451, 2011. View at Publisher · View at Google Scholar · View at Scopus