Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 897075, 9 pages
http://dx.doi.org/10.1155/2013/897075
Research Article

Oxidant-Antioxidant Balance in the Blood of Patients with Chronic Obstructive Pulmonary Disease After Smoking Cessation

1Collegium Medicum of Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland
2Specialist Family Medicine Center, Przesmyk 2/4, 87-100 Toruń, Poland
3Department of Normal Anatomy, Collegium Medicum of Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland
4Department of Neurosurgery, Stanisław Staszic Specialist Hospital, Rydygiera 1, 64-920 Piła, Poland

Received 6 May 2013; Revised 22 July 2013; Accepted 7 August 2013

Academic Editor: Neelam Khaper

Copyright © 2013 Alina Woźniak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Devereux, “ABC of chronic obstructive pulmonary disease: definition, epidemiology, and risk factors,” British Medical Journal, vol. 332, no. 7550, pp. 1142–1144, 2006. View at Google Scholar · View at Scopus
  2. P. Panzner, “Cytokines in chronic obstructive pulmonary disease and chronic bronchitis,” Alergia Astma Immunologia, vol. 8, no. 2, pp. 91–99, 2002. View at Google Scholar · View at Scopus
  3. P. J. Barnes, S. D. Shapiro, and R. A. Pauwels, “Chronic obstructive pulmonary disease: molecular and cellular mechanisms,” European Respiratory Journal, vol. 22, no. 4, pp. 672–688, 2003. View at Google Scholar · View at Scopus
  4. H. Wada and H. Takizawa, “Future treatment for COPD: targeting oxidative stress and its related signal,” Recent Patents on Inflammation & Allergy Drug Discovery, vol. 7, no. 1, pp. 1–11, 2013. View at Google Scholar
  5. A. Tam and D. D. Sin, “Pathobiologic mechanisms of chronic obstructive pulmonary disease,” The Medical Clinics of North America, vol. 96, no. 4, pp. 681–698, 2012. View at Publisher · View at Google Scholar
  6. N. Miglino, M. Roth, M. Tamm, and P. Borger, “Asthma and COPD—the C/EBP connection,” The Open Respiratory Medicine Journal, vol. 6, pp. 1–13, 2012. View at Google Scholar
  7. W. MacNee and I. Rahman, “Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease?” Trends in Molecular Medicine, vol. 7, no. 2, pp. 55–62, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Mateos, J. H. Brock, and J. L. Pérez-Arellano, “Iron metabolism in the lower respiratory tract,” Thorax, vol. 53, no. 7, pp. 594–600, 1998. View at Google Scholar · View at Scopus
  9. I. Rahman, E. Skwarska, and W. MacNee, “Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease,” Thorax, vol. 52, no. 6, pp. 565–568, 1997. View at Google Scholar · View at Scopus
  10. Y. Komaki, H. Sugiura, A. Koarai et al., “Cytokine-mediated xanthine oxidase upregulation in chronic obstructive pulmonary disease's airways,” Pulmonary Pharmacology and Therapeutics, vol. 18, no. 4, pp. 297–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Richter, V. Gogvadze, R. Laffranchi et al., “Oxidants in mitochondria: from physiology to diseases,” Biochimica et Biophysica Acta, vol. 1271, no. 1, pp. 67–74, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Pratt, K. A. Tallman, and N. A. Porter, “Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks,” Accounts of Chemical Research, vol. 44, no. 6, pp. 458–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Favier, “The oxidative stress: Interest of its monitoring in clinical chemistry and problems of the choice of an appropriate parameter,” Annales de Biologie Clinique, vol. 55, no. 1, pp. 9–16, 1997. View at Google Scholar · View at Scopus
  14. A. Woźniak, “Signs of oxidative stress after exercise,” Biology of Sport, vol. 20, no. 2, pp. 93–112, 2003. View at Google Scholar · View at Scopus
  15. F. Michel, D. Bonnefont-Rousselot, E. Mas, J. Drai, and P. Thérond, “Biomarkers of lipid peroxidation: analytical aspects,” Annales de Biologie Clinique, vol. 66, no. 6, pp. 605–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Cantin, “Cellular response to cigarette smoke and oxidants: adapting to survive,” Proceedings of the American Thoracic Society, vol. 7, no. 6, pp. 368–375, 2010. View at Google Scholar · View at Scopus
  17. J. C. W. Mak, “Pathogenesis of COPD. Part II. Oxidative-antioxidative imbalance,” International Journal of Tuberculosis and Lung Disease, vol. 12, no. 4, pp. 368–374, 2008. View at Google Scholar · View at Scopus
  18. B. I. Hasnain and A. D. Mooradian, “Recent trials of antioxidant therapy: what should we be telling our patients?” Cleveland Clinic Journal of Medicine, vol. 71, no. 4, pp. 327–334, 2004. View at Google Scholar · View at Scopus
  19. P. D. Scanlon, J. E. Connett, L. A. Waller et al., “Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease: the lung health study,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2 I, pp. 381–390, 2000. View at Google Scholar · View at Scopus
  20. O. Sergent, I. Morel, P. Cogrel et al., “Simultaneous measurements of conjugated dienes and free malondialdehyde, used as a micromethod for the evaluation of lipid peroxidation in rat hepatocyte cultures,” Chemistry and Physics of Lipids, vol. 65, no. 2, pp. 133–139, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, no. C, pp. 302–310, 1978. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Esterbauer and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal,” Methods in Enzymology, vol. 186, pp. 407–421, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” The Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Google Scholar · View at Scopus
  24. R. F. Beers Jr. and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” The Journal of biological chemistry, vol. 195, no. 1, pp. 133–140, 1952. View at Google Scholar · View at Scopus
  25. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Google Scholar · View at Scopus
  26. S. Wieliński and A. Olszanowski, “Practical optimization of solvent selectivity using gradient elution for rapid selection and mixture-design statistical technique for the separation of fat-soluble vitamins,” Journal of Liquid Chromatography and Related Technologies, vol. 22, no. 20, pp. 3115–3128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-I. Lee, “The level of antioxidant enzymes in red blood cells of patients with chronic obstructive pulmonary disease,” Tuberculosis and Respiratory Diseases, vol. 44, no. 1, pp. 104–113, 1997. View at Google Scholar · View at Scopus
  28. J. De Castro, A. Hernández-Hernández, M. C. Rodríguez, J. L. Sardina, M. Llanillo, and J. Sánchez-Yagüe, “Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma,” Platelets, vol. 18, no. 1, pp. 43–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Cristóvão, L. Cristóvão, F. Nogueira, and M. Bicho, “Evaluation of the oxidant and antioxidant balance in the pathogenesis of chronic obstructive pulmonary disease,” Revista Portuguesa De Pneumologia, vol. 19, no. 2, pp. 70–75, 2013. View at Google Scholar
  30. F. Folchini, N. L. Nonato, E. Feofiloff, V. D'Almeida, O. Nascimento, and J. R. Jardim, “Association of oxidative stress markers and C-reactive protein with multidimensional indexes in COPD,” Chronic Respiratory Disease, vol. 8, no. 2, pp. 101–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Çalikoǧlu, A. Ünlü, L. Tamer, B. Ercan, R. Buǧdayci, and U. Atik, “The levels of serum vitamin C, malonyldialdehyde and erythrocyte reduced glutathione in chronic obstructive pulmonary disease and in healthy smokers,” Clinical Chemistry and Laboratory Medicine, vol. 40, no. 10, pp. 1028–1031, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Santos, A. L. Oliveira, A. M. Viegas-Crespo et al., “Systemic markers of the redox balance in chronic obstructive pulmonary disease,” Biomarkers, vol. 9, no. 6, pp. 461–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Nadeem, H. G. Raj, and S. K. Chhabra, “Increased oxidative stress and altered levels of antioxidants in chronic obstructive pulmonary disease,” Inflammation, vol. 29, no. 1, pp. 23–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. D. Torres-Ramos, A. Montoya-Estrada, A. M. Guzman-Grenfell et al., “Urban PM2.5 induces ROS generation and RBC damage in COPD patients,” Frontiers in Bioscience, vol. 3, pp. 808–817, 2011. View at Google Scholar · View at Scopus
  35. I. Hanta, A. Kocabas, N. Canacankatan, S. Kuleci, and G. Seydaoglu, “Oxidant-antioxidant balance in patients with COPD,” Lung, vol. 184, no. 2, pp. 51–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. A. Waseem, M. M. Hossain, N. Islam, and Z. Ahmad, “Comparative study of pulmonary functions and oxidative stress in smokers and non-smokers,” Indian Journal of Physiology and Pharmacology, vol. 56, no. 4, pp. 345–352, 2012. View at Google Scholar
  37. R. R. Rai and M. S. Phadke, “Plasma oxidant-antioxidant status in different respiratory disorders,” Indian Journal of Clinical Biochemistry, vol. 21, no. 2, pp. 161–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Zhou, F. Guo, and Z. Qian, “Effects of cigarette smoking on antioxidant vitamin and activities of antioxidases,” Zhonghua Yu Fang Yi Xue Za Zhi, vol. 31, no. 2, pp. 67–70, 1997. View at Google Scholar · View at Scopus
  39. Y.-C. Lin, T.-C. Wu, P.-Y. Chen, L.-Y. Hsieh, and S.-L. Yeh, “Comparison of plasma and intake levels of antioxidant nutrients in patients with chronic obstructive pulmonary disease and healthy people in Taiwan: a case-control study,” Asia Pacific Journal of Clinical Nutrition, vol. 19, no. 3, pp. 393–401, 2010. View at Google Scholar · View at Scopus
  40. R. R. Jenkins, K. Krause, and L. S. Schofield, “Influence of exercise on clearance of oxidant stress products and loosely bound iron,” Medicine and Science in Sports and Exercise, vol. 25, no. 2, pp. 213–217, 1993. View at Google Scholar · View at Scopus
  41. Ü. Sahin, M. Ünlü, F. Özgüner, R. Sütcü, A. Akkaya, and N. Delibas, “Lipid peroxidation and glutathione peroxidase activity in chronic obstructive pulmonary disease exacerbation: prognostic value of malondialdehyde,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 12, no. 1, pp. 59–68, 2001. View at Google Scholar · View at Scopus
  42. F. Karadag, A. B. Karul, O. Cildag, C. Altun, and O. Gurgey, “Determinants of BMI in patients with COPD,” Respirology, vol. 9, no. 1, pp. 70–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Louhelainen, P. Rytilä, T. Haahtela, V. L. Kinnula, and R. Djukanović, “Persistence of oxidant and protease burden in the airways after smoking cessation,” BMC Pulmonary Medicine, vol. 9, article 25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. C. Yang, “Relationship between smoking habits and lung function changes with conventional spirometry,” Journal of the Formosan Medical Association, vol. 92, pp. S225–S231, 1993. View at Google Scholar · View at Scopus