Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 956792, 11 pages
http://dx.doi.org/10.1155/2013/956792
Review Article

Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants

1University of Ljubljana, Laboratory of Oxidative Stress Research, Faculty of Health Sciences, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
2University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia

Received 4 February 2013; Accepted 7 April 2013

Academic Editor: Oren Tirosh

Copyright © 2013 Borut Poljsak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Riley, “Free radicals in biology: oxidative stress and the effects of ionizing radiation,” International Journal of Radiation Biology, vol. 65, no. 1, pp. 27–33, 1994. View at Google Scholar · View at Scopus
  2. B. Halliwell, J. M. C. Gutteridge, and C. E. Cross, “Free radicals, antioxidants, and human disease: where are we now?” Journal of Laboratory and Clinical Medicine, vol. 119, no. 6, pp. 598–620, 1992. View at Google Scholar · View at Scopus
  3. B. Poljsak, P. Jamnik, P. Raspor, and M. Pesti, “Oxidation-antioxidation-reduction processes in the cell: impacts of environmental pollution,” in Encyclopedia of Environmental Health, N. Jerome, Ed., pp. 300–306, Elsevier, 2011. View at Google Scholar
  4. M. Gilca, I. Stoian, V. Atanasiu, and B. Virgolici, “The oxidative hypothesis of senescence,” Journal of Postgraduate Medicine, vol. 53, no. 3, pp. 207–213, 2007. View at Google Scholar · View at Scopus
  5. J. M. C. Gutteridge, “Free radicals in disease processes: a compilation of cause and consequence,” Free Radical Research Communications, vol. 19, no. 3, pp. 141–158, 1993. View at Google Scholar · View at Scopus
  6. H. Sies, “Oxidative stress: from basic research to clinical application,” American Journal of Medicine, vol. 91, no. 3, pp. 31–38, 1991. View at Google Scholar · View at Scopus
  7. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar
  8. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, UK, 3nd edition, 1999.
  9. K. Rahman, “Studies on free radicals, antioxidants, and co-factors,” Clinical Interventions in Aging, vol. 2, no. 2, pp. 219–236, 2007. View at Google Scholar · View at Scopus
  10. B. Halliwell, “Free radicals and antioxidants—quo vadis?” Trends in Pharmacological Sciences, vol. 32, no. 3, pp. 125–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. K. H. Cheeseman and T. F. Slater, “An introduction to free radical biochemistry,” British Medical Bulletin, vol. 49, no. 3, pp. 481–493, 1993. View at Google Scholar · View at Scopus
  12. D. Gems and R. Doonan, “Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong?” Cell Cycle, vol. 8, no. 11, pp. 1681–1687, 2009. View at Google Scholar · View at Scopus
  13. V. I. Pérez, A. Bokov, H. V. Remmen et al., “Is the oxidative stress theory of aging dead?” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1005–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. C. Jang and H. V. Remmen, “The mitochondrial theory of aging: insight from transgenic and knockout mouse models,” Experimental Gerontology, vol. 44, no. 4, pp. 256–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Terman and U. T. Brunk, “Oxidative stress, accumulation of biological “garbage”, and aging,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 197–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. U. T. Brunk, C. B. Jones, and R. S. Sohal, “A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis,” Mutation Research, vol. 275, no. 3–6, pp. 395–403, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Terman, “Garbage catastrophe theory of aging: imperfect removal of oxidative damage?” Redox Report, vol. 6, no. 1, pp. 15–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Dröge and H. M. Schipper, “Oxidative stress and aberrant signaling in aging and cognitive decline,” Aging Cell, vol. 6, no. 3, pp. 361–370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Bokov, A. Chaudhuri, and A. Richardson, “The role of oxidative damage and stress in aging,” Mechanisms of Ageing and Development, vol. 125, no. 10-11, pp. 811–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Stanner, J. Hughes, C. N. M. Kelly, and J. Buttriss, “A review of the epidemiological evidence for the ‘antioxidant hypothesis’,” Public Health Nutrition, vol. 7, no. 3, pp. 407–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. World Cancer Research Found, http://www.wcrf.org/.
  22. A. Cherubini, G. B. Vigna, G. Zuliani, C. Ruggiero, U. Senin, and R. Fellin, “Role of antioxidants in atherosclerosis: epidemiological and clinical update,” Current Pharmaceutical Design, vol. 11, no. 16, pp. 2017–2032, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. B. Lotito and B. Frei, “Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?” Free Radical Biology and Medicine, vol. 41, no. 12, pp. 1727–1746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Boeing, A. Bechthold, A. Bub et al., “Critical review: vegetables and fruit in the prevention of chronic diseases,” European Journal of Nutrition, vol. 51, no. 6, pp. 637–663, 2012. View at Google Scholar
  25. F. L. Crowe, A. W. Roddam, T. J. Key et al., “Fruit and vegetable intake and mortality from ischaemic heart disease: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heart study,” European Heart Journal, vol. 32, no. 10, pp. 1235–1243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. W. C. Willett, “The Mediterranean diet: science and practice,” Public Health Nutrition A, vol. 9, no. 1, pp. 105–110, 2006. View at Google Scholar · View at Scopus
  27. V. Glaser, “Billion-dollar market blossoms as botanicals take root,” Nature Biotechnology, vol. 17, no. 1, pp. 17–18, 1999. View at Google Scholar · View at Scopus
  28. I. Raskin, D. M. Ribnicky, S. Komarnytsky et al., “Plants and human health in the twenty-first century,” Trends in Biotechnology, vol. 20, no. 12, pp. 522–531, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. DSHEA, http://www.fda.gov/Food/DietarySupplements/default.htm.
  30. FDA, http://www.fda.gov/Drugs/DevelopmentApprovalProcess/default.htm.
  31. Y. Dundar and R. Aslan, “Antioxidative stress,” Eastern Journal of Medicine, vol. 5, no. 2, pp. 45–47, 2000. View at Google Scholar
  32. B. Poljsak and I. Milisav, “The neglected significance of ‘Antioxidative Stress’,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 480895, 12 pages, 2012. View at Publisher · View at Google Scholar
  33. B. Halliwell, “Oxidative stress and cancer: have we moved forward?” Biochemical Journal, vol. 401, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. Omenn, G. E. Goodman, M. D. Thornquist et al., “Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease,” The New England Journal of Medicine, vol. 334, no. 18, pp. 1150–1155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Bjelakovic, D. Nikolova, R. G. Simonetti, and C. Gluud, “Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis,” The Lancet, vol. 364, no. 9441, pp. 1219–1228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. E. R. Miller, R. Pastor-Barriuso, D. Dalal, R. A. Riemersma, L. J. Appel, and E. Guallar, “Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality,” Annals of Internal Medicine, vol. 142, no. 1, pp. 37–46, 2005. View at Google Scholar · View at Scopus
  37. Heart Protection Study Collaborative Group, “MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20 536 high-risk individuals: a randomised placebo-controlled trial,” The Lancet, vol. 360, no. 9326, pp. 23–33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. Age-Related Eye Disease Study Research Group, “A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotine for age-related cataract and vision loss: AREDS report no. 9,” Archives of Ophthalmology, vol. 119, pp. 1439–1452, 200152. View at Google Scholar
  39. J. Mursu, K. Robien, L. J. Harnack, K. Park, and D. R. Jacobs Jr., “Dietary supplements and mortality rate in older women: the Iowa Women's Health Study,” Archives of Internal Medicine, vol. 171, no. 18, pp. 1625–1633, 2011. View at Google Scholar
  40. E. A. Klein, I. M. Thompson Jr., C. M. Tangen et al., “Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT),” Journal of the American Medical Association, vol. 306, no. 14, pp. 1549–1556, 2011. View at Google Scholar
  41. G. Bjelakovic, D. Nikolova, L. L. Gluud, R. G. Simonetti, and C. Gluud, “Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases,” Cochrane Database of Systematic Reviews, vol. 16, no. 2, Article ID CD007176, 2008. View at Google Scholar · View at Scopus
  42. S. Hercberg, K. Ezzedine, C. Guinot et al., “Antioxidant supplementation increases the risk of skin cancers in women but not in men,” Journal of Nutrition, vol. 137, no. 9, pp. 2098–2105, 2007. View at Google Scholar · View at Scopus
  43. A. Bardia, I. M. Tleyjeh, J. R. Cerhan et al., “Efficacy of antioxidant supplementation in reducing primary cancer incidence and mortality: systematic review and meta-analysis,” Mayo Clinic Proceedings, vol. 83, no. 1, pp. 23–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. D. Lawenda, K. M. Kelly, E. J. Ladas, S. M. Sagar, A. Vickers, and J. B. Blumberg, “Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy?” Journal of the National Cancer Institute, vol. 100, no. 11, pp. 773–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. S. K. Myung, Y. Kim, W. Ju, H. J. Choi, and W. K. Bae, “Effects of antioxidant supplements on cancer prevention: meta-analysis of randomized controlled trials,” Annals of Oncology, vol. 21, no. 1, pp. 166–179, 2010. View at Google Scholar · View at Scopus
  46. G. Bjelakovic, D. Nikolova, L. L. Gluud, R. G. Simonetti, and C. Gluud, “Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD007176, 2008. View at Google Scholar · View at Scopus
  47. M. Ristow, K. Zarse, A. Oberbach et al., “Antioxidants prevent health Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases.-promoting effects of physical exercise in humans,” Proceedings of the National Academy of Sciences of the United States, vol. 106, pp. 8665–8670, 2009. View at Google Scholar
  48. S. Verhaegn, J. Adrain, J. McGovan, A. R. Brophy, R. S. Fernandes, and T. G. Gotler, “Inhibition of apoptosis by antioxidants in the human IIL-60 leukemia cell line,” Biochemical Pharmacology, vol. 40, pp. 1021–1029, 1995. View at Google Scholar
  49. R. G. Cutler and M. P. Mattson, “Measuring oxidative stress and interpreting its relevance in humans,” in Oxidative Stress and Aging, R. G. Cutler and H. Rodriguez, Eds., World Scientific, New Jersey, NJ, USA, 2003. View at Google Scholar
  50. R. G. Cutler, “Genetic stability, dysdifferentiation, and longevity determinant genes,” in Critical Reviews of Oxidative Stress and Damage, R. G. Cutler and H. Rodriguez, Eds., World Scientific, New Jersey, NJ, USA, 2003. View at Google Scholar
  51. R. S. Sohal and R. Weindruch, “Oxidative stress, caloric restriction, and aging,” Science, vol. 273, no. 5271, pp. 59–63, 1996. View at Google Scholar · View at Scopus
  52. I. Bogdan Allemann and L. Baumann, “Antioxidants used in skin care formulations,” Skin Therapy Letter, vol. 13, no. 7, pp. 5–9, 2008. View at Google Scholar · View at Scopus
  53. J. L. Hagen, D. J. Krause, D. J. Baker, M. Hua Fu, M. A. Tarnopolsky, and R. T. Hepple, “Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial dysfunction contributes to the age-associated reduction in VO2max,” Journals of Gerontology A, vol. 59, no. 11, pp. 1099–1110, 2004. View at Google Scholar · View at Scopus
  54. M. L. Hamilton, H. Van Remmen, J. A. Drake et al., “Does oxidative damage to DNA increase with age?” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10469–10474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. G. A. C. Murrell, M. J. O. Francis, and L. Bromley, “Modulation of fibroblast proliferation by oxygen free radicals,” Biochemical Journal, vol. 265, no. 3, pp. 659–665, 1990. View at Google Scholar · View at Scopus
  56. K. M. Kim, P. K. Kim, Y. G. Kwon, S. K. Bai, W. D. Nam, and Y. M. Kim, “Regulation of apoptosis by nitrosative stress,” Journal of Biochemistry and Molecular Biology, vol. 35, pp. 127–133, 2002. View at Google Scholar
  57. G. Kroemer, N. Zamzami, and S. A. Susin, “Mitochondrial control of apoptosis,” Immunology Today, vol. 18, no. 1, pp. 44–51, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Schreck, P. Rieber, and P. A. Baeuerle, “Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1,” The EMBO Journal, vol. 10, no. 8, pp. 2247–2258, 1991. View at Google Scholar · View at Scopus
  59. K. D. Kroncke, “Nitrosative stress and transcription,” The Journal of Biological Chemistry, vol. 384, pp. 1365–1377, 2003. View at Google Scholar
  60. D. C. Fitzgerald, K. G. Meade, A. N. McEvoy et al., “Tumour necrosis factor-α (TNF-α) increases nuclear factor κB (NFκB) activity in and interleukin-8 (IL-8) release from bovine mammary epithelial cells,” Veterinary Immunology and Immunopathology, vol. 116, no. 1-2, pp. 59–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Renard, M. D. Zachary, C. Bougelet et al., “Effects of antioxidant enzyme modulations on interleukin-1-induced nuclear factor kappa B activation,” Biochemical Pharmacology, vol. 53, no. 2, pp. 149–160, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Meier, H. H. Radeke, S. Selle et al., “Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α,” Biochemical Journal, vol. 263, no. 2, pp. 539–545, 1989. View at Google Scholar · View at Scopus
  63. M. L. Tiku, J. B. Liesch, and F. M. Robertson, “Production of hydrogen peroxide by rabbit articular chondrocytes. Enhancement by cytokines,” Journal of Immunology, vol. 145, no. 2, pp. 690–696, 1990. View at Google Scholar · View at Scopus
  64. Y. Y. C. Lo and T. F. Cruz, “Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes,” Journal of Biological Chemistry, vol. 270, no. 20, pp. 11727–11730, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Yang, S. G. Elner, Z. M. Bian, G. O. Till, H. R. Petty, and V. M. Elner, “Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells,” Experimental Eye Research, vol. 85, no. 4, pp. 462–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Y. C. Lo, J. M. S. Wong, and T. F. Cruz, “Reactive oxygen species mediate cytokine activation of c-Jun NH2- terminal kinases,” Journal of Biological Chemistry, vol. 271, no. 26, pp. 15703–15707, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Cai, Z. Li, S. Dikalov et al., “NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II,” Journal of Biological Chemistry, vol. 277, no. 50, pp. 48311–48317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. Q. Felty, W. C. Xiong, D. Sun et al., “Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers,” Biochemistry, vol. 44, no. 18, pp. 6900–6909, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. G. B. Waypa, J. D. Marks, M. M. Mack, C. Boriboun, P. T. Mungai, and P. T. Schumacker, “Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes,” Circulation Research, vol. 91, no. 8, pp. 719–726, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. H. L. Pahl and P. A. Baeuerle, “Oxygen and the control of gene expression,” BioEssays, vol. 16, no. 7, pp. 497–502, 1994. View at Google Scholar · View at Scopus
  71. F. S. Wang, C. J. Wang, Y. J. Chen et al., “Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1α and VEGF-A expression in shock wave-stimulated osteoblasts,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10331–10337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. K. M. Connor, S. Subbaram, K. J. Regan et al., “Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 16916–16924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. P. D. Ray, B.-W. Huang, and Y. Tsuji, “Reactive oxigen species (ROS) homeostasis and redox regulation in cellular signaling,” Cellular Signalling, vol. 24, no. 5, pp. 981–990, 2012. View at Google Scholar
  74. B. Halliwell and C. E. Cross, “Oxygen-derived species: their relation to human disease and environmental stress,” Environmental Health Perspectives, vol. 102, no. 10, pp. 5–12, 1994. View at Google Scholar · View at Scopus
  75. S. G. Rhee, Y. S. Bae, S. R. Lee, and J. Kwon, “Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation,” Science"s STKE, vol. 2000, no. 53, p. PE1, 2000. View at Google Scholar · View at Scopus
  76. S. G. Rhee, “Redox signaling: hydrogen peroxide as intracellular messenger,” Experimental & Molecular Medicine, vol. 31, pp. 53–59, 1999. View at Google Scholar
  77. T. Finkel, “Oxygen radicals and signaling,” Current Opinion in Cell Biology, vol. 10, pp. 248–253, 1998. View at Google Scholar
  78. Y. J. Suzuki and G. D. Ford, “Redox regulation of signal transduction in cardiac and smooth muscle,” Journal of Molecular and Cellular Cardiology, vol. 31, pp. 345–353, 1999. View at Google Scholar
  79. B. Poljsak, “Strategies for reducing or preventing the generation of oxidative stress,” Oxidative Medicine and Cellular Longevity, vol. 2011, Article ID 194586, 15 pages, 2011. View at Publisher · View at Google Scholar
  80. S. I. S. Rattan and D. Demirovic, “Hormesis can and does work in humans,” Dose-Response, vol. 8, no. 1, pp. 58–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. P. Mattson, T. G. Son, and S. Camandola, “Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals,” Dose Response, vol. 5, no. 3, pp. 174–186, 2007. View at Google Scholar
  82. B. M. Babior and R. C. Woodman, “Chronic granulomatous disease,” Seminars in Hematology, vol. 27, no. 3, pp. 247–259, 1990. View at Google Scholar · View at Scopus
  83. R. Stocker and B. Frei, “Endogenous antioxidant defenses in human blood plasma,” in Oxidative Stress: Oxidants and Antioxidants, H. Sies, Ed., pp. 213–242, Academic Press, London, UK, 1991. View at Google Scholar
  84. R. I. Salganik, “The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population,” Journal of the American College of Nutrition, vol. 20, no. 5, pp. 464S–72S, 2001. View at Google Scholar · View at Scopus
  85. D. P. Vivekananthan, M. S. Penn, S. K. Sapp, A. Hsu, and E. J. Topol, “Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials,” The Lancet, vol. 361, no. 9374, pp. 2017–2023, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Caraballoso, M. Sacristan, C. Serra, and X. Bonfill, “Drugs for preventing lung cancer in healthy people,” Cochrane Database of Systematic Reviews, vol. 2, Article ID CD002141, 2003. View at Google Scholar · View at Scopus
  87. I. D. Podmore, H. R. Griffiths, K. E. Herbert, N. Mistry, P. Mistry, and J. Lunec, “Vitamin C exhibits pro-oxidant properties,” Nature, vol. 392, no. 6676, p. 559, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. P. Palozza, “Pro-oxidant actions of carotenoids in biologic systems,” Nutrition Reviews, vol. 56, no. 9, pp. 257–265, 1998. View at Google Scholar · View at Scopus
  89. K. J. Davies, “Oxidative stress: the paradox of aerobic life,” Biochemical Society Symposium, vol. 61, pp. 1–31, 1995. View at Google Scholar · View at Scopus
  90. T. Blatt, H. Wenck, and K. P. Wittern, “Alterations of energy metabolism in cutaneous aging,” in Textbook of Aging Skin, M. A. Farage, K. W. Miller, and H. I. Maibach, Eds., Springer, Berlin, Germany, 2010. View at Google Scholar
  91. A. Kowald and T. B. L. Kirkwood, “Towards a network theory of ageing: a model combining the free radical theory and the protein error theory,” Journal of Theoretical Biology, vol. 168, no. 1, pp. 75–94, 1994. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Kowald and T. B. L. Kirkwood, “A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process,” Mutation Research, vol. 316, no. 5-6, pp. 209–236, 1996. View at Publisher · View at Google Scholar · View at Scopus
  93. T. B. L. Kirkwood, “Evolution of ageing,” Nature, vol. 270, no. 5635, pp. 301–304, 1977. View at Publisher · View at Google Scholar · View at Scopus
  94. T. J. Schulz, K. Zarse, A. Voigt, N. Urban, M. Birringer, and M. Ristow, “Glucose restriction extends caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress,” Cell Metabolism, vol. 6, no. 4, pp. 280–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Wani, G. E. Milo, and S. M. D'Ambrosio, “Enhanced expression of the 8-oxo-7,8-dihydrodeoxyguanosine triphosphatase gene in human breast tumor cells,” Cancer Letters, vol. 125, no. 1-2, pp. 123–130, 1998. View at Publisher · View at Google Scholar · View at Scopus
  96. R. Bases, W. A. Franklin, T. Moy, and F. Mendez, “Enhanced excision repair activity in mammalian cells after ionizing radiation,” International Journal of Radiation Biology, vol. 62, no. 4, pp. 427–441, 1992. View at Google Scholar · View at Scopus
  97. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  98. I. Milisav, B. Poljsak, and D. Suput, “Adaptive response, evidence of cross-resistance and its potential clinical use,” International Journal of Molecular Sciences, vol. 13, no. 9, pp. 10771–10806, 2012. View at Google Scholar
  99. K. J. Williams and E. A. Fisher, “Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory?” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 8, no. 2, pp. 139–146, 2005. View at Google Scholar · View at Scopus
  100. Z. Sahnoun, K. Jamoussi, and K. M. Zeghal, “Free radicals: fundamental notions and methods of exploration,” Therapie, vol. 52, no. 4, pp. 251–270, 1997. View at Google Scholar · View at Scopus
  101. B. Poljsak and P. Jamik, “Methodology for oxidative state detection in biological systems,” in Handbook of Free Radicals: Formation, Types and Effects, D. Kozyrev and V. Slutsky, Eds., Cell Biology Research Progress Series, Nova Science, New York, NY, USA, 2010. View at Google Scholar
  102. S. Miwa, F. L. Muller, and K. B. Beckman, “The basics of oxidative biochemistry,” in Oxidative Stress in Aging. From Model Systems to Human Diseases, S. Miwa, K. B. Beckman, and F. L. Muller, Eds., Humana Press, Totowa, NJ, USA, 2008. View at Google Scholar
  103. J. Lunec and H. R. Griffits, Measuring in vivo Oxidative Damage, John Willey and Sons, New York, NY, USA, 2000.
  104. S. Argüelles, A. Gómez, A. Machado, and A. Ayala, “A preliminary analysis of within-subject variation in human serum oxidative stress parameters as a function of time,” Rejuvenation Research, vol. 10, no. 4, pp. 621–636, 2007. View at Google Scholar
  105. B. Halliwell, “The wanderings of a free radical,” Free Radical Biology and Medicine, vol. 46, no. 5, pp. 531–542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Anlasik, H. Sies, H. R. Griffiths, P. Mecocci, W. Stahl, and M. C. Polidori, “Dietary habits are major determinants of the plasma antioxidant status in healthy elderly subjects,” British Journal of Nutrition, vol. 94, no. 5, pp. 639–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. “The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers,” The New England Journal of Medicine, vol. 330, no. 15, pp. 1029–1035, 1994. View at Publisher · View at Google Scholar · View at Scopus
  108. A. E. Holley and K. H. Cheeseman, “Measuring free radical reactions in vivo,” British Medical Bulletin, vol. 49, no. 3, pp. 494–505, 1993. View at Google Scholar · View at Scopus
  109. B. P. Yu, “Aging and oxidative stress: modulation by dietary restriction,” Free Radical Biology & Medicine, vol. 21, pp. 651–668, 1996. View at Google Scholar