Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 978101, 11 pages
http://dx.doi.org/10.1155/2013/978101
Research Article

Reversal of Myoblast Aging by Tocotrienol Rich Fraction Posttreatment

1Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Thérapie des Maladies du Muscle Strié, Institut de Myologie, UM76, Université Pierre et Marie Curie, 47 Boulevard de l’hôpital, G.H. Pitié-Salpétrière, Bâtiment Babinski, Cedex 13, 75651 Paris, France
3INSERM U974, 47 Boulevard de l’hôpital, G.H. Pitié-Salpétrière, Bâtiment Babinski, Cedex 13, 75651 Paris, France
4CNRS UMR 7215, 47 Boulevard de l’hôpital, G.H. Pitié-Salpétrière, Bâtiment Babinski, Cedex 13, 75651 Paris, France

Received 5 July 2013; Revised 17 October 2013; Accepted 21 October 2013

Academic Editor: Consuelo Borras

Copyright © 2013 Jing Jye Lim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Cruz-Jentoft, F. Landi, E. Topinková, and J. P. Michel, “Understanding sarcopenia as a geriatric syndrome,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Palomero and M. J. Jackson, “Redox regulation in skeletal muscle during contractile activity and aging,” Journal of Animal Science, vol. 88, no. 4, pp. 1307–1313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Bigot, V. Jacquemin, F. Debacq-Chainiaux et al., “Replicative aging down-regulates the myogenic regulatory factors in human myoblasts,” Biology of the Cell, vol. 100, no. 3, pp. 189–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Wernig, R. Schäfer, U. Knauf et al., “On the regenerative capacity of human skeletal muscle,” Artificial Organs, vol. 29, no. 3, pp. 192–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Mauro, “Satellite cell of skeletal muscle fibers,” Journal of Biophysical and Biochemical Cytology, vol. 9, pp. 493–495, 1961. View at Google Scholar · View at Scopus
  6. I. Riederer, E. Negroni, A. Bigot et al., “Heat shock treatment increases engraftment of transplanted human myoblasts into immunodeficient mice,” Transplantation Proceedings, vol. 40, no. 2, pp. 624–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Le Bihan, A. Bigot, S. S. Jensen et al., “In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts,” Journal of Proteomics, vol. 77, pp. 344–356, 2012. View at Publisher · View at Google Scholar
  8. V. Mouly, A. Aamiri, A. Bigot et al., “The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy,” Acta Physiologica Scandinavica, vol. 184, no. 1, pp. 3–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sandri, L. Barberi, A. Y. Bijlsma et al., “Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF-Akt-mTOR-FoxO pathway,” Biogerontology, vol. 14, no. 3, pp. 303–323, 2013. View at Publisher · View at Google Scholar
  10. M. Baraibar, M. Gueugneau, S. Duguez, G. Butler-Browne, D. Bechet, and B. Friguet, “Expression and modification proteomics during skeletal muscle ageing,” Biogerontology, vol. 14, no. 3, pp. 339–352, 2013. View at Publisher · View at Google Scholar
  11. D. Paddon-Jones, K. R. Short, W. W. Campbell, E. Volpi, and R. R. Wolfe, “Role of dietary protein in the sarcopenia of aging,” The American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1562S–1566S, 2008. View at Google Scholar · View at Scopus
  12. V. E. Arango-Lopera, P. Arroyo, L. Gutiérrez-Robledo, M. U. Perez-Zepeda, and M. Cesari, “Mortality as an adverse outcome of sarcopenia,” Journal of Nutrition Health and Aging, vol. 17, no. 3, pp. 259–262, 2013. View at Publisher · View at Google Scholar
  13. D. Bunout, M. P. de la Maza, G. Barrera, L. Leiva, and S. Hirsch, “Association between sarcopenia and mortality in healthy older people,” Australasian Journal on Ageing, vol. 30, no. 2, pp. 89–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. A. Sayer, E. M. Dennison, H. E. Syddall, H. J. Gilbody, D. I. W. Phillips, and C. Cooper, “Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg?” Diabetes Care, vol. 28, no. 10, pp. 2541–2542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Kwan, “Sarcopenia, a neurogenic syndrome?” Journal of Aging Research, vol. 2013, Article ID 791679, 10 pages, 2013. View at Publisher · View at Google Scholar
  16. V. Renault, L. E. Thornell, G. Butler-Browne, and V. Mouly, “Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock,” Experimental Gerontology, vol. 37, no. 10-11, pp. 1229–1236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kayo, D. B. Allison, R. Weindruch, and T. A. Prolla, “Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5093–5098, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Makpol, N. Abdul Rahim, C. K. Hui, and W. Z. W. Ngah, “Inhibition of mitochondrial cytochrome c release and suppression of caspases by γ-tocotrienol prevent apoptosis and delay aging in stress-induced premature senescence of skin fibroblasts,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 785743, 13 pages, 2012. View at Publisher · View at Google Scholar
  19. S. Makpol, A. Z. Abidin, K. Sairin, M. Mazlan, G. M. Top, and W. Z. W. Ngah, “γ-tocotrienol prevents oxidative stress-induced telomere shortening in human fibroblasts derived from different aged individuals,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 1, pp. 35–43, 2010. View at Google Scholar · View at Scopus
  20. J. Ju, S. C. Picinich, Z. Yang et al., “Cancer-preventive activities of tocopherols and tocotrienols,” Carcinogenesis, vol. 31, no. 4, pp. 533–542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Ren, M. Pae, M. C. Dao, D. Smith, S. N. Meydani, and D. Wu, “Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice,” Journal of Nutrition, vol. 140, no. 7, pp. 1335–1341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. L. Yam, S. R. Abdul Hafid, H. Cheng, and K. Nesaretnam, “Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages,” Lipids, vol. 44, no. 9, pp. 787–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Li, W. Tan, Z. Kang, and C. W. Wong, “Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors,” Atherosclerosis, vol. 211, no. 1, pp. 278–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Fukui, K. Ushiki, H. Takatsu, T. Koike, and S. Urano, “Tocotrienols prevent hydrogen peroxide-induced axon and dendrite degeneration in cerebellar granule cells,” Free Radical Research, vol. 46, no. 2, pp. 184–193, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Muhammad, D. A. Luke, A. N. Shuid, N. Mohamed, and I. N. Soelaiman, “Two different isomers of vitamin e prevent bone loss in postmenopausal osteoporosis rat model,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 161527, 7 pages, 2012. View at Publisher · View at Google Scholar
  26. J. S. Zhang, D. M. Li, Y. Ma et al., “γ-tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells,” PLoS ONE, vol. 8, no. 2, Article ID e57779, 2013. View at Publisher · View at Google Scholar
  27. S. Makpol, L. W. Durani, K. H. Chua, Y. A. M. Yusof, and W. Z. W. Ngah, “Tocotrienol-rich fraction prevents cell cycle arrest and elongates telomere length in senescent human diploid fibroblasts,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 506171, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Adachi and N. Ishii, “Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans,” Journals of Gerontology A, vol. 55, no. 6, pp. B280–B285, 2000. View at Google Scholar · View at Scopus
  29. F. Edom, V. Mouly, J. P. Barbet, M. Y. Fiszman, and G. S. Butler-Browne, “Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains,” Developmental Biology, vol. 164, no. 1, pp. 219–229, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. S. J. Kaufman and R. F. Foster, “Replicating myoblasts express a muscle-specific phenotype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 24, pp. 9606–9610, 1988. View at Google Scholar · View at Scopus
  31. G. P. Dimri, X. Lee, G. Basile et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9363–9367, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Ferrando, M. Sheffield-Moore, C. W. Yeckel et al., “Testosterone administration to older men improves muscle function: molecular and physiological mechanisms,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 282, no. 3, pp. E601–E607, 2002. View at Google Scholar · View at Scopus
  33. G. Shefer, G. Rauner, Z. Yablonka-Reuveni, and D. Benayahu, “Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise,” PLoS ONE, vol. 5, no. 10, Article ID e13307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Abd Manan, N. Mohamed, and A. N. Shuid, “Effects of low-dose versus high-dose γ-tocotrienol on the bone cells exposed to the hydrogen peroxide-induced oxidative stress and apoptosis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 680834, 10 pages, 2012. View at Publisher · View at Google Scholar
  35. M. Mazlan, S. M. Then, G. Mat Top, and W. Z. W. Ngah, “Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes,” Journal of the Neurological Sciences, vol. 243, no. 1-2, pp. 5–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Bortoli, V. Renault, E. Eveno, C. Auffray, G. Butler-Browne, and G. Piétu, “Gene expression profiling of human satellite cells during muscular aging using cDNA arrays,” Gene, vol. 321, no. 1-2, pp. 145–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Renault, G. Piron-Hamelin, C. Forestier et al., “Skeletal muscle regeneration and the mitotic clock,” Experimental Gerontology, vol. 35, no. 6-7, pp. 711–719, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. O. Nehlin, M. Just, A. C. Rustan, and M. Gaster, “Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism,” Biogerontology, vol. 12, no. 4, pp. 349–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Y. Lee, J. A. Han, J. S. Im et al., “Senescence-associated β-galactosidase is lysosomal β-galactosidase,” Aging Cell, vol. 5, no. 2, pp. 187–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. J. Aan, H. A. Hairi, S. Makpol, and M. A. Rahman, “Differential protein expression in senescent human skin fibroblasts and stress induced premature senescence (SIPS) fibroblasts,” Sains Malaysiana, vol. 40, no. 11, pp. 1247–1253, 2011. View at Google Scholar · View at Scopus
  41. V. Renault, L. E. Thorne, P. O. Eriksson, G. Butler-Browne, and V. Mouly, “Regenerative potential of human skeletal muscle during aging,” Aging Cell, vol. 1, no. 2, pp. 132–139, 2002. View at Google Scholar · View at Scopus
  42. M. E. Carlson, M. Hsu, and I. M. Conboy, “Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells,” Nature, vol. 454, no. 7203, pp. 528–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. B. Joshi and D. Praticò, “Vitamin E in aging, dementia, and Alzheimer's disease,” BioFactors, vol. 38, no. 2, pp. 90–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. T. N. Burks, E. Andres-Mateos, R. Marx et al., “Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia,” Science Translational Medicine, vol. 3, no. 82, Article ID 82ra37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Haddad and G. R. Adams, “Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy,” Journal of Applied Physiology, vol. 100, no. 4, pp. 1188–1203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. X. H. Li, D. Fu, N. H. Latif et al., “δ-tocotrienol protects mouse and human hematopoietic progenitors from γ-irradiation through extracellular signal-regulated kinase/mammalian target of rapamycin signaling,” Haematologica, vol. 95, no. 12, pp. 1996–2004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Saito, K. Nishio, Y. O. Akazawa et al., “Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: tocopherols and tocotrienols exert similar effects by antioxidant function,” Free Radical Biology and Medicine, vol. 49, no. 10, pp. 1542–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Y. Mo, H. Tang, and L. Miele, “Notch-associated MicroRNAs in cancer,” Current Drug Targets, vol. 14, no. 10, pp. 1157–1166, 2013. View at Publisher · View at Google Scholar
  49. J. F. Chen, Y. Tao, J. Li et al., “microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7,” Journal of Cell Biology, vol. 190, no. 5, pp. 867–879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. A. Rudnicki, F. Le Grand, I. McKinnell, and S. Kuang, “The molecular regulation of muscle stem cell function,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 323–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Relaix and P. S. Zammit, “Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage,” Development, vol. 139, pp. 2845–2856, 2012. View at Publisher · View at Google Scholar
  52. J. Luna, M. C. Masamunt, J. Llach, S. Delgado, and M. Sans, “Palm oil tocotrienol rich fraction reduces extracellular matrix production by inhibiting transforming growth factor-β1 in human intestinal fibroblasts,” Clinical Nutrition, vol. 30, no. 6, pp. 858–864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Makpol, A. Zainuddin, K. H. Chua, Y. A. M. Yusof, and W. Z. W. Ngah, “γ-tocotrienol modulation of senescenceassociated gene expression prevents cellular aging in human diploid fibroblasts,” Clinics, vol. 67, no. 2, pp. 135–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. N. S. Aliahmat, M. R. M. Noor, W. J. W. Yusof, S. Makpol, W. Z. W. Ngah, and Y. A. M. Yusof, “Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice,” Clinics, vol. 67, no. 12, pp. 1447–1454, 2012. View at Publisher · View at Google Scholar
  55. S. F. Chin, J. Ibahim, S. Makpol et al., “Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy older adults: a randomized controlled study,” Nutrition and Metabolism, vol. 8, article 42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. C. K. Chang, H. Y. Huang, H. F. Tseng, Y. D. Hsuuw, and T. K. Tso, “Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles,” Journal of Nutritional Biochemistry, vol. 18, no. 1, pp. 39–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. J. Ryan, H. J. Dudash, M. Docherty et al., “Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats,” Experimental Gerontology, vol. 45, no. 11, pp. 882–895, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. A. A. Sayer, S. M. Robinson, H. P. Patel, T. Shavlakadze, C. Cooper, and M. D. Grounds, “New horizons in the pathogenesis, diagnosis and management of sarcopenia,” Age and Ageing, vol. 42, no. 2, pp. 145–150, 2013. View at Publisher · View at Google Scholar