Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2014, Article ID 572430, 9 pages
http://dx.doi.org/10.1155/2014/572430
Research Article

Resveratrol Inhibits Phenotype Modulation by Platelet Derived Growth Factor-bb in Rat Aortic Smooth Muscle Cells

1Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-752, Republic of Korea
2Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-752, Republic of Korea

Received 8 November 2013; Revised 8 January 2014; Accepted 27 January 2014; Published 10 March 2014

Academic Editor: Constantinos Pantos

Copyright © 2014 Mi Hee Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Davies and P.-O. Hagen, “Pathobiology of intimal hyperplasia,” British Journal of Surgery, vol. 81, no. 9, pp. 1254–1269, 1994. View at Google Scholar · View at Scopus
  2. W. D. Coats and D. P. Faxon, “The role of the extracellular matrix in arterial remodelling,” Seminars in Interventional Cardiology, vol. 2, no. 3, pp. 167–176, 1997. View at Google Scholar · View at Scopus
  3. S. M. Schwartz, “Smooth muscle migration in atherosclerosis and restenosis,” The Journal of Clinical Investigation, vol. 99, no. 12, pp. 2814–2817, 1997. View at Google Scholar · View at Scopus
  4. S. Kenji, H. Ken’ichiro, and N. Wataru, “Molecular mechanism of phenotypic modulation of smooth muscle cells,” Hormone Research, vol. 50, supplement 2, pp. 15–24, 1998. View at Google Scholar · View at Scopus
  5. E. M. Rzucidlo, K. A. Martin, R. J. Powell, and N. H. Lebanon, “Regulation of vascular smooth muscle cell differentiation,” Journal of Vascular Surgery, vol. 45, no. 6, pp. 25–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. T. Rozenblum and M. Gimona, “Calponins: adaptable modular regulators of the actin cytoskeleton,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 10, pp. 1990–1995, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Sundaresan, Z.-X. Yu, V. J. Ferrans, K. Irani, and T. Finkel, “Requirement for generation of H2O2 for platelet-derived growth factor signal transduction,” Science, vol. 270, no. 5234, pp. 296–299, 1995. View at Google Scholar · View at Scopus
  8. C.-H. Heldin and B. Westermark, “Mechanism of action and in vivo role of platelet-derived growth factor,” Physiological Reviews, vol. 79, no. 4, pp. 1283–1316, 1999. View at Google Scholar · View at Scopus
  9. Y. Zhan, S. Kim, Y. Izumi et al., “Role of JNK, p38, and ERK in platelet-derived growth factor—induced vascular proliferation, migration, and gene expression,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 5, pp. 795–801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Sekulic, C. C. Hudson, J. L. Homme et al., “A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells,” Cancer Research, vol. 60, no. 13, pp. 3504–3513, 2000. View at Google Scholar · View at Scopus
  11. S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” Cell, vol. 124, no. 3, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Sadruddin and R. Arora, “Resveratrol: biologic and therapeutic implications,” Journal of the CardioMetabolic Syndrome, vol. 4, no. 2, pp. 102–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X.-B. Wang, J. Huang, J.-G. Zou et al., “Effects of resveratrol on number and activity of endothelial progenitor cells from human peripheral blood,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 11, pp. 1109–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. M. Brito, R. Devillard, A. Nègre-Salvayre et al., “Resveratrol inhibits the mTOR mitogenic signaling evoked by oxidized LDL in smooth muscle cells,” Atherosclerosis, vol. 205, no. 1, pp. 126–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Fremont, L. Belguendouz, and S. Delpal, “Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids,” Life Sciences, vol. 64, no. 26, pp. 2511–2521, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Wang, J. Zou, K. Cao, T.-C. Hsieh, Y. Huang, and J. M. Wu, “Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels,” International Journal of Molecular Medicine, vol. 16, no. 1, pp. 533–540, 2005. View at Google Scholar · View at Scopus
  17. H.-J. Sung, S. G. Eskin, Y. Sakurai, A. Yee, N. Kataoka, and L. V. McIntire, “Oxidative stress produced with cell migration increases synthetic phenotype of vascular smooth muscle cells,” Annals of Biomedical Engineering, vol. 33, no. 11, pp. 1546–1554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Li, S. Sims, Y. Jiao, L. H. Chow, and J. G. Pickering, “Evidence from a novel human cell clone that adult vascular smooth muscle cells can convert reversibly between noncontractile and contractile phenotypes,” Circulation Research, vol. 85, no. 4, pp. 338–348, 1999. View at Google Scholar · View at Scopus
  19. G. K. Owens, “Regulation of differentiation of vascular smooth muscle cells,” Physiological Reviews, vol. 75, no. 3, pp. 487–517, 1995. View at Google Scholar · View at Scopus
  20. G. K. Owens, M. S. Kumar, and B. R. Wamhoff, “Molecular regulation of vascular smooth muscle cell differentiation in development and disease,” Physiological Reviews, vol. 84, no. 3, pp. 767–801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. U. Rani, R. Kesavan, R. Ganugula et al., “Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats,” Journal of Nutritional Biochemistry, vol. 24, no. 11, pp. 1830–1839, 2013. View at Publisher · View at Google Scholar
  22. K. K. Griendling and M. Ushio-Fukai, “Redox control of vascular smooth muscle proliferation,” Journal of Laboratory and Clinical Medicine, vol. 132, no. 1, pp. 9–15, 1998. View at Google Scholar · View at Scopus
  23. Y. Taniyama and K. K. Griendling, “Reactive oxygen species in the vasculature: molecular and cellular mechanisms,” Hypertension, vol. 42, no. 6, pp. 1075–1081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Romano, C. Chiarenza, F. Palombi et al., “Platelet-derived growth factor-bb-induced hypertrophy of peritubular smooth muscle cells is mediated by activation of p38 MAP-kinase and of Rho-kinase,” Journal of Cellular Physiology, vol. 207, no. 1, pp. 123–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. P. Reusch, S. Zimmermann, M. Schaefer, M. Paul, and K. Moelling, “Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 33630–33637, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. G. K. Owens and G. Wise, “Regulation of differentiation/maturation in vascular smooth muscle cells by hormones and growth factors,” Agents and Actions Supplements, vol. 48, pp. 3–24, 1997. View at Google Scholar · View at Scopus
  27. R. S. Blank and G. K. Owens, “Platelet-derived growth factor regulates actin isoform expression and growth state in cultured rat aortic smooth muscle cells,” Journal of Cellular Physiology, vol. 142, no. 3, pp. 635–642, 1990. View at Google Scholar · View at Scopus
  28. M. Gimona, I. Kaverina, G. P. Resch, E. Vignal, and G. Burgstaller, “Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells,” Molecular Biology of the Cell, vol. 14, no. 6, pp. 2482–2491, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Hayashi, M. Takahashi, W. Nishida et al., “Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids,” Circulation Research, vol. 89, no. 3, pp. 251–258, 2001. View at Google Scholar · View at Scopus
  30. M. N. Corradetti and K.-L. Guan, “Upstream of the mammalian target of rapamycin: do all roads pass through mTOR?” Oncogene, vol. 25, no. 48, pp. 6347–6360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. R. C. Braun-Dullaeus, M. J. Mann, U. Seay et al., “Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 7, pp. 1152–1158, 2001. View at Google Scholar · View at Scopus
  32. N. Auge, V. Garcia, F. Maupas-Schwalm, T. Levade, R. Salvayre, and A. Negre-Salvayre, “Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 12, pp. 1990–1995, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J.-C. Stoclet, T. Chataigneau, M. Ndiaye et al., “Vascular protection by dietary polyphenols,” European Journal of Pharmacology, vol. 500, no. 1–3, pp. 299–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. El-Mowafy and R. E. White, “Resveratrol inhibits MAPK activity and nuclear translocation in coronary artery smooth muscle: reversal of endothelin-1 stimulatory effects,” FEBS Letters, vol. 451, no. 1, pp. 63–67, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. V. P. Ekshyyan, V. Y. Hebert, A. Khandelwal, and T. R. Dugas, “Resveratrol inhibits rat aortic vascular smooth muscle cell proliferation via estrogen receptor dependent nitric oxide production,” Journal of Cardiovascular Pharmacology, vol. 50, no. 1, pp. 83–93, 2007. View at Publisher · View at Google Scholar · View at Scopus