Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2015, Article ID 240918, 10 pages
http://dx.doi.org/10.1155/2015/240918
Research Article

Relationship between the Increased Haemostatic Properties of Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage

1Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
2Department of Physical Medicine, Medical University of Lodz, Plac Hallera 1, 90-647 Lodz, Poland
3Neurorehabilitation Ward, III General Hospital in Lodz, Milionowa 14, 93-113 Lodz, Poland
4Department of Orthodontics, Medical University in Lodz, Pomorska 251, 92-213 Lodz, Poland
5Department of Toxicology, Faculty of Pharmacy with Division of Medical Analytics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland

Received 18 December 2014; Revised 16 March 2015; Accepted 1 April 2015

Academic Editor: Silvana Hrelia

Copyright © 2015 Agnieszka Morel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Miller, “Multiple sclerosis,” in Neurodegenerative Diseases, vol. 724 of Advances in Experimental Medicine and Biology, pp. 222–238, Springer, New York, NY, USA, 2012. View at Publisher · View at Google Scholar
  2. A. Gaby, “Multiple sclerosis,” Global Advances in Health and Medicine, vol. 2, no. 1, pp. 50–56, 2013. View at Publisher · View at Google Scholar
  3. M. Bradl and H. Lassmann, “Progressive multiple sclerosis,” Seminars in Immunopathology, vol. 31, no. 4, pp. 455–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Fitzner and M. Simons, “Chronic progressive multiple sclerosis—pathogenesis of neurodegeneration and therapeutic strategies,” Current Neuropharmacology, vol. 8, no. 3, pp. 305–315, 2010. View at Google Scholar · View at Scopus
  5. A. Fiorini, T. Koudriavtseva, E. Bucaj et al., “Involvement of oxidative stress in occurrence of relapses in multiple sclerosis: the spectrum of oxidatively modified serum proteins detected by proteomics and redox proteomics analysis,” PLoS ONE, vol. 8, no. 6, Article ID e65184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Witherick, A. Wilkins, N. Scolding, and K. Kemp, “Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment,” Autoimmune Diseases, vol. 2011, no. 1, Article ID 164608, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Lassmann, J. van Horssen, and D. Mahad, “Progressive multiple sclerosis: pathology and pathogenesis,” Nature Reviews Neurology, vol. 8, no. 11, pp. 647–656, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Christensen, D. K. Farkas, L. Pedersen, M. Miret, C. F. Christiansen, and H. T. Sørensen, “Multiple sclerosis and risk of venous thromboembolism: a population-based cohort study,” Neuroepidemiology, vol. 38, no. 2, pp. 76–83, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Han, S.-I. Hwang, D. B. Roy et al., “Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets,” Nature, vol. 451, no. 7182, pp. 1076–1081, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Engelhardt and R. M. Ransohoff, “The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms,” Trends in Immunology, vol. 26, no. 9, pp. 485–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Li, M. K. Delaney, K. A. O'Brien, and X. Du, “Signaling during platelet adhesion and activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 12, pp. 2341–2349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. R. Macfarlane, M. J. Seatter, T. Kanke, G. D. Hunter, and R. Plevin, “Proteinase-activated receptors,” Pharmacological Reviews, vol. 53, no. 2, pp. 245–282, 2001. View at Google Scholar · View at Scopus
  13. C. Lock, G. Hermans, R. Pedotti et al., “Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis,” Nature Medicine, vol. 8, no. 5, pp. 500–508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Miller, A. Walczak, J. Saluk, M. B. Ponczek, and I. Majsterek, “Oxidative modification of patient's plasma proteins and its role in pathogenesis of multiple sclerosis,” Clinical Biochemistry, vol. 45, no. 1-2, pp. 26–30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Miller, M. Mrowicka, K. Zołyński, and J. Kedziora, “Oxidative stress in multiple sclerosis,” Polski Merkuriusz Lekarski, vol. 162, pp. 499–502, 2009. View at Google Scholar
  16. B. Wachowicz and J. Kustroń, “Effect of cisplatin on lipid peroxidation in pig blood platelets.,” Cytobios, vol. 70, no. 280, pp. 41–47, 1992. View at Google Scholar · View at Scopus
  17. B. Walkowiak, E. Michalak, W. Koziołkiewicz, and C. S. Cierniewski, “Rapid photometric method for estimation of platelet count in blood plasma or platelet suspension,” Thrombosis Research, vol. 56, no. 6, pp. 763–766, 1989. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Takagi and R. F. Doolittle, “Amino acid sequence of the carboxy-terminal cyanogen bromide peptide of the human fibrinogen β-chain: homology with the corresponding γ-chain peptide and presence in fragment D,” Biochimica et Biophysica Acta—Protein Structure, vol. 386, no. 2, pp. 617–622, 1975. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Olas, J. Saluk-Juszczak, I. Pawlaczyk et al., “Antioxidant and antiaggregatory effects of an extract from Conyza canadensis on blood platelets in vitro,” Platelets, vol. 17, no. 6, pp. 354–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Jahn and G. M. Hansch, “Oxygen radical generation in human platelets: dependence of 12-lipoxygenase activity and on the glutathione cycle,” International Archives of Allergy and Immunology, vol. 93, pp. 73–79, 1990. View at Google Scholar
  21. H. F. Langer, E. Y. Choi, H. Zhou et al., “Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis,” Circulation Research, vol. 110, no. 9, pp. 1202–1210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Satoh, “Molecular network analysis of multiple sclerosis brain lesion proteome,” Nihon Rinsho Meneki Gakkai kaishi, vol. 4, pp. 182–188, 2010. View at Google Scholar
  23. B. Savage, F. Almus-Jacobs, and Z. M. Ruggeri, “Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow,” Cell, vol. 94, no. 5, pp. 657–666, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. L. L. Horstman, W. Jy, Y. S. Ahn et al., “Role of platelets in neuroinflammation: a wide-angle perspective,” Journal of Neuroinflammation, vol. 7, article 10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. A. Sheremata, J. Y. Wenche, L. L. Horstman, J. S. Ahn, J. S. Alexander, and A. Minagar, “Evidence of platelet activation in multiple sclerosis,” Journal of Neuroinflammation, vol. 5, article 27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. F. Klinger and H. Klüter, “Blood platelets are circulating stores for adhesive proteins, inflammatory mediators, and immunoglobulins—role in nonhemolytic transfusion reactions,” Infusionsther Transfusionsmed, vol. 26, no. 1, pp. 20–25, 1999. View at Google Scholar · View at Scopus
  27. J. Saluk-Juszczak, K. Królewska, and B. Wachowicz, “Response of blood platelets to β-glucan from Saccharomyces cerevisiae,” Platelets, vol. 21, no. 1, pp. 37–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Hamzeh-Cognasse, F. Cognasse, S. Palle et al., “Direct contact of platelets and their released products exert different effects on human dendritic cell maturation,” BMC Immunology, vol. 9, article 54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Kuenz, A. Lutterotti, M. Khalil et al., “Plasma levels of soluble adhsion molecules sPECAM- 1, sP-selectin and sE-selectin are associated with relapsing/remitting disease course in multiple sclerosis,” Journal of Neuroimmunology, vol. 167, pp. 143–149, 2005. View at Google Scholar
  30. L. Callea, M. Arese, A. Orlandini, C. Bargnani, A. Priori, and F. Bussolino, “Platelet activating factor is elevated in cerebral spinal fluid and plasma of patients with relapsing-remitting multiple sclerosis,” Journal of Neuroimmunology, vol. 94, no. 1-2, pp. 212–221, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Disanto, A. J. Berlanga, A. E. Handel et al., “Heterogeneity in multiple sclerosis: scratching the surface of a complex disease,” Autoimmune Diseases, vol. 2011, Article ID 932351, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Bö, T. M. Dawson, S. Wesselingh et al., “Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains,” Annals of Neurology, vol. 36, no. 5, pp. 778–786, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. J. P. Eiserich, R. P. Patel, and V. B. O'Donnell, “Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules,” Molecular Aspects of Medicine, vol. 19, no. 4-5, pp. 221–357, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. M. H. F. Klinger, “Platelets and inflammation,” Anatomy and Embryology, vol. 196, no. 1, pp. 1–11, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Krötz, H.-Y. Sohn, and U. Pohl, “Reactive oxygen species: players in the platelet game,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 11, pp. 1988–1996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Gawaz, H. Langer, and A. E. May, “Platelets in inflammation and atherogenesis,” The Journal of Clinical Investigation, vol. 115, no. 12, pp. 3378–3384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Wens, U. Dalgas, E. Stenager, and B. O. Eijnde, “Risk factors related to cardiovascular diseases and the metabolic syndrome in multiple sclerosis—a systematic review,” Multiple Sclerosis, vol. 19, no. 12, pp. 1556–1564, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. D. J. Mahad, I. Ziabreva, G. Campbell et al., “Mitochondrial changes within axons in multiple sclerosis,” Brain, vol. 132, no. 5, pp. 1161–1174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. E. Witte, B. Ø. Lars, R. J. Rodenburg et al., “Enhanced number and activity of mitochondria in multiple sclerosis lesions,” The Journal of Pathology, vol. 219, no. 2, pp. 193–204, 2009. View at Publisher · View at Google Scholar · View at Scopus