Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 4693801, 11 pages
http://dx.doi.org/10.1155/2016/4693801
Research Article

Anti-Inflammatory Therapy Modulates Nrf2-Keap1 in Kidney from Rats with Diabetes

1Laboratory of Renal Physiopathology, Juan Badiano 1, 14080 Mexico City, DF, Mexico
2Department of Nephrology, Instituto Nacional de Cardiología-Ignacio Chávez, Juan Badiano 1, 14080 Mexico City, DF, Mexico
3Histopathology Laboratory, Research Subdivision, School of Medicine, Universidad Panamericana, Donatello 43, 03910 Mexico City, DF, Mexico

Received 10 November 2015; Revised 18 December 2015; Accepted 3 January 2016

Academic Editor: Silvana Hrelia

Copyright © 2016 Abraham Said Arellano-Buendía et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Navarro-González and C. Mora-Fernández, “The role of inflammatory cytokines in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 19, no. 3, pp. 433–442, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. P. E. Pergola, P. Raskin, R. D. Toto et al., “Bardoxolone methyl and kidney function in CKD with type 2 diabetes,” The New England Journal of Medicine, vol. 365, no. 4, pp. 327–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. J. Kim and N. D. Vaziri, “Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure,” The American Journal of Physiology—Renal Physiology, vol. 298, no. 3, pp. F662–F671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Galkina and K. Ley, “Leukocyte recruitment and vascular injury in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 17, no. 2, pp. 368–377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. W. Seo, Y. G. Kim, S. H. Lee et al., “Mycophenolate mofetil ameliorates diabetic nephropathy in db/db mice,” BioMed Research International, vol. 2015, Article ID 301627, 11 pages, 2015. View at Publisher · View at Google Scholar
  6. R. Utimura, C. K. Fujihara, A. L. Mattar, D. M. A. C. Malheiros, I. D. L. Noronha, and R. Zatz, “Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes,” Kidney International, vol. 63, no. 1, pp. 209–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. C. A. Feghali and T. M. Wright, “Cytokines in acute and chronic inflammation,” Frontiers in Bioscience, vol. 2, pp. d12–d26, 1997. View at Google Scholar
  8. K. Alexandraki, C. Piperi, C. Kalofoutis, J. Singh, A. Alaveras, and A. Kalofoutis, “Inflammatory process in type 2 diabetes: the role of cytokines,” Annals of the New York Academy of Sciences, vol. 1084, pp. 89–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Hasegawa, K. Nakano, M. Sawada et al., “Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy,” Kidney International, vol. 40, no. 6, pp. 1007–1012, 1991. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Suzuki, M. Miyazaki, R. Naka et al., “In situ hybridization of interleukin 6 in diabetic nephropathy,” Diabetes, vol. 44, no. 10, pp. 1233–1238, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Ma, L. Battelli, and A. F. Hubbs, “Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2,” American Journal of Pathology, vol. 168, no. 6, pp. 1960–1974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Itoh, K. Igarashi, N. Hayashi, M. Nishizawa, and M. Yamamoto, “Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins,” Molecular and Cellular Biology, vol. 15, no. 8, pp. 4184–4193, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Itoh, N. Wakabayashi, Y. Katoh et al., “Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain,” Genes & Development, vol. 13, no. 1, pp. 76–86, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Kobayashi, M.-I. Kang, H. Okawa et al., “Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2,” Molecular and Cellular Biology, vol. 24, no. 16, pp. 7130–7139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. B.-H. Choi, K.-S. Kang, and M.-K. Kwak, “Effect of redox modulating NRF2 activators on chronic kidney disease,” Molecules, vol. 19, no. 8, pp. 12727–12759, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. J.-M. Lee and J. A. Johnson, “An important role of Nrf2-ARE pathway in the cellular defense mechanism,” Journal of Biochemistry and Molecular Biology, vol. 37, no. 2, pp. 139–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Song, E. K. Kim, W. S. Moon et al., “Sulphoraphane protects against cytokine and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway,” Toxicology and Applied Pharmacology, vol. 235, no. 1, pp. 57–67, 2009. View at Publisher · View at Google Scholar
  18. A. S. Arellano-Buendía, F. E. García-Arroyo, M. Cristóbal-García et al., “Urinary excretion of neutrophil gelatinase-associated lipocalin in diabetic rats,” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 961326, 11 pages, 2014. View at Publisher · View at Google Scholar
  19. M. M. Diaz Encarnacion, M. D. Griffin, J. M. Slezak et al., “Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy,” American Journal of Transplantation, vol. 4, no. 2, pp. 248–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-G. Wu, H. Lin, X.-M. Qi et al., “Prevention of early renal injury by mycophenolate mofetil and its mechanism in experimental diabetes,” International Immunopharmacology, vol. 6, no. 3, pp. 445–453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Wu, J. Dong, L. Yuan et al., “Nephrin and podocin loss is prevented by mycophenolate mofetil in early experimental diabetic nephropathy,” Cytokine, vol. 44, no. 1, pp. 85–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Zhang, B. Chen, X.-H. Hou et al., “Effects of mycophenolate mofetil, valsartan and their combined therapy on preventing podocyte loss in early stage of diabetic nephropathy in rats,” Chinese Medical Journal, vol. 120, no. 11, pp. 988–995, 2007. View at Google Scholar · View at Scopus
  23. K. Yoh, A. Hirayama, K. Ishizaki et al., “Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice,” Genes to Cells, vol. 13, no. 11, pp. 1159–1170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. O.-H. Lee, A. K. Jain, V. Papusha, and A. K. Jaiswal, “An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance,” The Journal of Biological Chemistry, vol. 282, no. 50, pp. 36412–36420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Jiang, Z. Huang, Y. Lin, Z. Zhang, D. Fang, and D. D. Zhang, “The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy,” Diabetes, vol. 59, no. 4, pp. 850–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Tan, T. Ichikawa, J. Li et al., “Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo,” Diabetes, vol. 60, no. 2, pp. 625–633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. X. He, H. Kan, L. Cai, and Q. Ma, “Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 1, pp. 47–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Zhang, G. Johnston, B. Stebler, and E. T. Keller, “Hydrogen peroxide activates NFkappaB and the interleukin-6 promoter through NFkappaB-inducing kinase,” Antioxidants and Redox Signaling, vol. 3, no. 3, pp. 493–504, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Elmarakby and J. C. Sullivan, “Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy,” Cardiovascular Therapeutics, vol. 30, no. 1, pp. 49–59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. D. D. Zhang, S.-C. Lo, Z. Sun, G. M. Habib, M. W. Lieberman, and M. Hannink, “Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway,” The Journal of Biological Chemistry, vol. 280, no. 34, pp. 30091–30099, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. I. M. Copple, A. Lister, A. D. Obeng et al., “Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway,” The Journal of Biological Chemistry, vol. 285, no. 22, pp. 16782–16788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. Jain, S. Mahajan, and A. K. Jaiswal, “Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation,” The Journal of Biological Chemistry, vol. 283, no. 25, pp. 17712–17720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Gopalakrishnan and A.-N. Tony Kong, “Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-κB and AP-1 in abnormal cancer cells,” Food and Chemical Toxicology, vol. 46, no. 4, pp. 1257–1270, 2008. View at Publisher · View at Google Scholar · View at Scopus