Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 5698931, 9 pages
http://dx.doi.org/10.1155/2016/5698931
Review Article

Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox?

Department of Biochemistry, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh

Received 26 September 2015; Revised 29 October 2015; Accepted 19 November 2015

Academic Editor: Andreas Daiber

Copyright © 2016 Subrata Kumar Biswas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Sies, “Introductory remarks,” in Oxidative Stress, H. Sies, Ed., pp. 1–7, Academic Press, Orlando, Fla, USA, 1985. View at Google Scholar
  2. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, London, UK, 3rd edition, 1999.
  3. S. K. Biswas and J. B. Lopes de Faria, “Which comes first: renal inflammation or oxidative stress in spontaneously hypertensive rats?” Free Radical Research, vol. 41, no. 2, pp. 216–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. K. Biswas and J. B. Lopes de Faria, “Hypertension induces oxidative stress but not macrophage infiltration in the kidney in the early stage of experimental diabetes mellitus,” American Journal of Nephrology, vol. 26, no. 5, pp. 415–422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. Biswas, E. B. Peixoto, D. S. Souza, and J. B. Lopes de Faria, “Hypertension increases pro-oxidant generation and decreases antioxidant defense in the kidney in early diabetes,” American Journal of Nephrology, vol. 28, no. 1, pp. 133–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ambade and P. Mandrekar, “Oxidative stress and inflammation: essential partners in alcoholic liver disease,” International Journal of Hepatology, vol. 2012, Article ID 853175, 9 pages, 2012. View at Publisher · View at Google Scholar
  7. V. Cachofeiro, M. Goicochea, S. Garcia de Vinuesa, P. Oubiña, V. Lahera, and J. Luño, “Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease,” Kidney International, vol. 74, pp. S4–S9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. S. Tucker, A. T. Scanlan, and V. J. Dalbo, “Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 806358, 8 pages, 2015. View at Publisher · View at Google Scholar
  9. T. Collins, “Acute and chronic inflammation,” in Robbins Pathologic Basis of Disease, R. S. Cotran, V. Kumar, and T. Collins, Eds., pp. 50–88, W.B. Saunders, Philadelphia, Pa, USA, 1999. View at Google Scholar
  10. G. Bjelakovic, D. Nikolova, L. L. Gluud, R. G. Simonetti, and C. Gluud, “Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis,” The Journal of the American Medical Association, vol. 297, no. 8, pp. 842–857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Zhang, N. R. Cook, C. M. Albert, J. M. Gaziano, J. E. Buring, and J. E. Manson, “Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 17, pp. 2012–2021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. D. Sesso, J. E. Buring, W. G. Christen et al., “Vitamins E and C in the prevention of cardiovascular disease in men: the physicians' health study II randomized controlled trial,” The Journal of the American Medical Association, vol. 300, no. 18, pp. 2123–2133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Halliwell, “The antioxidant paradox,” The Lancet, vol. 355, no. 9210, pp. 1179–1180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Halliwell, “The antioxidant paradox: less paradoxical now?” British Journal of Clinical Pharmacology, vol. 75, no. 3, pp. 637–644, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. M. T. Anderson, F. J. T. Staal, C. Gitler, L. A. Herzenberg, and L. A. Herzenberg, “Separation of oxidant-initiated and redox-regulated steps in the NF-κB signal transduction pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 24, pp. 11527–11531, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Flohé, R. Brigelius-Flohé, C. Saliou, M. G. Traber, and L. Packer, “Redox regulation of NF-κB activation,” Free Radical Biology and Medicine, vol. 22, no. 6, pp. 1115–1126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?” Journal of Neurochemistry, vol. 97, no. 6, pp. 1634–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. I. G. Onyango, “Mitochondrial dysfunction and oxidative stress in Parkinson's disease,” Neurochemical Research, vol. 33, no. 3, pp. 589–597, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Hald, J. Van Beek, and J. Lotharius, “Inflammation in Parkinson's disease: causative or epiphenomenal?” in Inflammation in the Pathogenesis of Chronic Diseases, vol. 42 of Subcellular Biochemistry, pp. 249–279, Springer, Dordrecht, The Netherlands, 2007. View at Publisher · View at Google Scholar
  20. P. A. Mayes and K. M. Botham, “Biologic oxidation,” in Harper's Illustrated Biochemistry, R. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell, Eds., pp. 86–91, McGraw-Hill, Noida, India, 2003. View at Google Scholar
  21. B. Halliwell, “Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life,” Plant Physiology, vol. 141, no. 2, pp. 312–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Halliwell and M. Whiteman, “Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?” British Journal of Pharmacology, vol. 142, no. 2, pp. 231–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. P. Jones, “Redefining oxidative stress,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1865–1879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Halliwell, “Tell me about free radicals, doctor: a review,” Journal of the Royal Society of Medicine, vol. 82, no. 12, pp. 747–752, 1989. View at Google Scholar · View at Scopus
  25. T. Münzel, I. B. Afanas'ev, A. L. Kleschyov, and D. G. Harrison, “Detection of superoxide in vascular tissue,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 11, pp. 1761–1768, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. C. G. Schnachenberg, “Oxygen radicals in cardiovascular-renal disease,” Current Opinion in Pharmacology, vol. 2, pp. 121–125, 2002. View at Google Scholar
  27. F. Jiang, Y. Zhang, and G. J. Dusting, “NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair,” Pharmacological Reviews, vol. 63, no. 1, pp. 218–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. Pagano, Y. Ito, K. Tornheim, P. M. Gallop, A. I. Tauber, and R. A. Cohen, “An NADPH oxidase superoxide-generating system in the rabbit aorta,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 268, no. 6, pp. H2274–H2280, 1995. View at Google Scholar · View at Scopus
  29. R. C. Kukreja, H. A. Kontos, M. L. Hess, and E. F. Ellis, “PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH,” Circulation Research, vol. 59, no. 6, pp. 612–619, 1986. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Cosentino, S. Patton, L. V. d'Uscio et al., “Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats,” The Journal of Clinical Investigation, vol. 101, no. 7, pp. 1530–1537, 1998. View at Publisher · View at Google Scholar
  31. I. Fleming, U. R. Michaelis, D. Bredenkötter et al., “Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries,” Circulation Research, vol. 88, no. 1, pp. 44–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Halliwell, “What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo?” FEBS Letters, vol. 411, no. 2-3, pp. 157–160, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. J. S. Beckman and W. H. Koppenol, “Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly,” The American Journal of Physiology—Cell Physiology, vol. 271, no. 5, pp. C1424–C1437, 1996. View at Google Scholar · View at Scopus
  34. S. K. Biswas and J. B. Lopes de Faria, “Does peroxynitrite sustain nuclear factor-κB?” Cardiovascular Research, vol. 67, no. 4, pp. 745–748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Whiteman, J. S. Armstrong, N. S. Cheung et al., “Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains,” The FASEB Journal, vol. 18, no. 12, pp. 1395–1397, 2004. View at Publisher · View at Google Scholar
  36. M. D. Evans, M. Dizdaroglu, and M. S. Cooke, “Oxidative DNA damage and disease: induction, repair and significance,” Mutation Research/Reviews in Mutation Research, vol. 567, no. 1, pp. 1–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. G. Scandalios, “Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses,” Brazilian Journal of Medical and Biological Research, vol. 38, no. 7, pp. 995–1014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Nathan and A. Cunningham-Bussel, “Beyond oxidative stress: an immunologist's guide to reactive oxygen species,” Nature Reviews Immunology, vol. 13, no. 5, pp. 349–361, 2013. View at Publisher · View at Google Scholar
  39. J. D. Watson, “Type 2 diabetes as a redox disease,” The Lancet, vol. 383, no. 9919, pp. 841–843, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. Y.-O. Son, P. Pratheeshkumar, R. V. Roy et al., “Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis,” Journal of Biological Chemistry, vol. 289, no. 41, pp. 28660–28675, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. O. Son, P. Pratheeshkumar, R. V. Roy et al., “Antioncogenic and oncogenic properties of Nrf2 in arsenic-induced carcinogenesis,” The Journal of Biological Chemistry, vol. 290, no. 45, pp. 27090–27100, 2015. View at Publisher · View at Google Scholar
  42. Z. Zhang, P. Pratheeshkumar, A. Budhraja, Y.-O. Son, D. Kim, and X. Shi, “Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells,” Biochemical and Biophysical Research Communications, vol. 456, no. 2, pp. 643–648, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. Y.-O. Son, L. Wang, P. Poyil et al., “Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling,” Toxicology and Applied Pharmacology, vol. 264, no. 2, pp. 153–160, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Tabas and C. K. Glass, “Anti-inflammatory therapy in chronic disease: challenges and opportunities,” Science, vol. 339, no. 6116, pp. 166–172, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Bierhaus, P. M. Humpert, M. Morcos et al., “Understanding RAGE, the receptor for advanced glycation end products,” Journal of Molecular Medicine, vol. 83, no. 11, pp. 876–886, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Lavieri, P. Piccioli, S. Carta, L. Delfino, P. Castellani, and A. Rubartelli, “TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production,” Journal of Immunology, vol. 192, no. 11, pp. 5373–5381, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Daffu, C. H. del Pozo, K. M. O'Shea, R. Ananthakrishnan, R. Ramasamy, and A. M. Schmidt, “Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond,” International Journal of Molecular Sciences, vol. 14, no. 10, pp. 19891–19910, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. P. J. Barnes and M. Karin, “Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases,” The New England Journal of Medicine, vol. 336, no. 15, pp. 1066–1071, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Hoesel and J. A. Schmid, “The complexity of NF-κB signaling in inflammation and cancer,” Molecular Cancer, vol. 12, no. 1, article 86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. P. P. Tak and G. S. Firestein, “NF-κB: a key role in inflammatory diseases,” Journal of Clinical Investigation, vol. 107, no. 1, pp. 7–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Chen, V. Castranova, X. Shi, and L. M. Demers, “New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases,” Clinical Chemistry, vol. 45, no. 1, pp. 7–17, 1999. View at Google Scholar · View at Scopus
  52. T. Lawrence, D. W. Gilroy, P. R. Colville-Nash, and D. A. Willoughby, “Possible new role for NF-κB in the resolution of inflammation,” Nature Medicine, vol. 7, no. 12, pp. 1291–1297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Sompol, Y. Xu, W. Ittarat, C. Daosukho, and D. St. Clair, “NF-κB-associated MnSOD induction protects against β-amyloid-induced neuronal apoptosis,” Journal of Molecular Neuroscience, vol. 29, no. 3, pp. 279–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Djuric, M. Kashif, T. Fleming et al., “Targeting activation of specific NF-κB subunits prevents stress-dependent atherothrombotic gene expression,” Molecular Medicine, vol. 18, pp. 1375–1386, 2012. View at Google Scholar · View at Scopus
  55. A. R. Brasier, “The NF-κB regulatory network,” Cardiovascular Toxicology, vol. 6, no. 2, pp. 111–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Castellani, E. Balza, and A. Rubartelli, “Inflammation, DAMPs, tumor development, and progression: a vicious circle orchestrated by redox signaling,” Antioxidants and Redox Signaling, vol. 20, no. 7, pp. 1086–1097, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Mittal, M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik, “Reactive oxygen species in inflammation and tissue injury,” Antioxidants & Redox Signaling, vol. 20, no. 7, pp. 1126–1167, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Fialkow, Y. Wang, and G. P. Downey, “Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function,” Free Radical Biology and Medicine, vol. 42, no. 2, pp. 153–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Wu, J. Lu, S. Antony et al., “Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-γ and lipopolysaccharide in human pancreatic cancer cell lines,” The Journal of Immunology, vol. 190, no. 4, pp. 1859–1872, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Li, T. Lan, C. Zhang et al., “Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells,” Oncotarget, vol. 6, no. 2, pp. 1031–1048, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, “A role for mitochondria in NLRP3 inflammasome activation,” Nature, vol. 469, no. 7329, pp. 221–225, 2011. View at Publisher · View at Google Scholar
  62. K. Shimada, T. R. Crother, J. Karlin et al., “Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis,” Immunity, vol. 36, no. 3, pp. 401–414, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Zhou, A. Tardivel, B. Thorens, I. Choi, and J. Tschopp, “Thioredoxin-interacting protein links oxidative stress to inflammasome activation,” Nature Immunology, vol. 11, no. 2, pp. 136–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Schroder and J. Tschopp, “The inflammasomes,” Cell, vol. 140, no. 6, pp. 821–832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Aguilera-Aguirre, A. Bacsi, Z. Radak et al., “Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-κB pathway,” Journal of Immunology, vol. 193, no. 9, pp. 4643–4653, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Scholz, A. Yndestad, J. K. Damås et al., “8-Isoprostane increases expression of interleukin-8 in human macrophages through activation of mitogen-activated protein kinases,” Cardiovascular Research, vol. 59, no. 4, pp. 945–954, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. S. S. Iyer, C. J. Accardi, T. R. Ziegler et al., “Cysteine redox potential determines pro-inflammatory IL-1β levels,” PLoS ONE, vol. 4, no. 3, Article ID e5017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. Y.-M. Go and D. P. Jones, “Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state,” Circulation, vol. 111, no. 22, pp. 2973–2980, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. N. D. Vaziri and B. Rodríguez-Iturbe, “Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension,” Nature Clinical Practice Nephrology, vol. 2, no. 10, pp. 582–593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. N. D. Vaziri, “Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension,” Current Opinion in Nephrology and Hypertension, vol. 13, no. 1, pp. 93–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Rodríguez-Iturbe, Y. Quiroz, A. Ferrebuz, G. Parra, and N. D. Vaziri, “Evolution of renal interstitial inflammation and NF-κB activation in spontaneously hypertensive rats,” American Journal of Nephrology, vol. 24, no. 6, pp. 587–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Chabrashvili, A. Tojo, M. L. Onozato et al., “Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney,” Hypertension, vol. 39, no. 2 I, pp. 269–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. C. S. Wilcox, “Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 289, no. 4, pp. R913–R935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Nava, Y. Quiroz, N. Vaziri, and B. Rodríguez-Iturbe, “Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats,” American Journal of Physiology—Renal Physiology, vol. 284, no. 3, pp. F447–F454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Rodriguez-Iturbe, C.-D. Zhan, Y. Quiroz, R. K. Sindhu, and N. D. Vaziri, “Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats,” Hypertension, vol. 41, no. 2, pp. 341–346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Cuzzocrea, E. Mazzon, L. Dugo, R. Di Paola, A. P. Caputi, and D. Salvemini, “Superoxide: a key player in hypertension,” The FASEB Journal, vol. 18, no. 1, pp. 94–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. M. P. Murphy, A. Holmgren, N.-G. Larsson et al., “Unraveling the biological roles of reactive oxygen species,” Cell Metabolism, vol. 13, no. 4, pp. 361–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Rehman, C. S. Collis, M. Yang et al., “The effects of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers,” Biochemical and Biophysical Research Communications, vol. 246, no. 1, pp. 293–298, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. E. R. Beatty, T. G. England, C. A. Geissler, O. I. Aruoma, and B. Halliwell, “Effects of antioxidant vitamin supplementation on markers of DNA damage and plasma antioxidants,” Proceedings of the Nutrition Society, vol. 58, abstract 44, 1999. View at Google Scholar
  80. I. D. Podmore, H. R. Griffiths, K. E. Herbert, N. Mistry, P. Mistry, and J. Lunec, “Vitamin C exhibits pro-oxidant properties,” Nature, vol. 392, no. 6676, 559 pages, 1998. View at Google Scholar