Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 8956981, 10 pages
http://dx.doi.org/10.1155/2016/8956981
Research Article

Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

1Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
2Research & Development Centre, Infinitus (China) Company Ltd., Guangzhou 510665, China
3School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
4Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China

Received 9 August 2015; Accepted 30 December 2015

Academic Editor: Hesham A. El Enshasy

Copyright © 2016 Qiangqiang Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Houstis, E. D. Rosen, and E. S. Lander, “Reactive oxygen species have a causal role in multiple forms of insulin resistance,” Nature, vol. 440, no. 7086, pp. 944–948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Dalle-Donne, R. Rossi, A. Milzani, P. Di Simplicio, and R. Colombo, “The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself,” Free Radical Biology and Medicine, vol. 31, no. 12, pp. 1624–1632, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Yu, F. Wan, S. Dutta et al., “Autophagic programmed cell death by selective catalase degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4952–4957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Chen, L. Rezaizadehnajafi, and M. Wink, “Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans,” Journal of Pharmacy and Pharmacology, vol. 65, no. 5, pp. 682–688, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Abbas and M. Wink, “Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans,” Planta Medica, vol. 75, no. 3, pp. 216–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Xiao, H. Li, J. Zhang et al., “Salidroside protects Caenorhabditis elegans neurons from polyglutamine-mediated toxicity by reducing oxidative stress,” Molecules, vol. 19, no. 6, pp. 7757–7769, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kampkötter, T. Pielarski, R. Rohrig et al., “The Ginkgo biloba extract EGb761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase 4 in Caenorhabditis elegans,” Pharmacological Research, vol. 55, no. 2, pp. 139–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Jiang, T. Tong, J. Sun, Y. Xu, Z. Zhao, and D. Liao, “Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate,” Food Chemistry, vol. 154, pp. 158–163, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Rajapakse, E. Mendis, H.-G. Byun, and S.-K. Kim, “Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems,” Journal of Nutritional Biochemistry, vol. 16, no. 9, pp. 562–569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Chen, H. Yang, Y. Sun, J. Niu, and S. Liu, “Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates,” Peptides, vol. 38, no. 2, pp. 344–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Memarpoor-Yazdi, H. Mahaki, and H. Zare-Zardini, “Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits,” Journal of Functional Foods, vol. 5, no. 1, pp. 62–70, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. A. T. Girgih, R. He, S. Malomo, M. Offengenden, J. Wu, and R. E. Aluko, “Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides,” Journal of Functional Foods, vol. 6, no. 1, pp. 384–394, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Deng, S.-N. Chen, P. Yao et al., “Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis,” Journal of Natural Products, vol. 69, no. 4, pp. 536–541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Lei, H. F. Li, Z. Fang et al., “Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress,” Neural Regeneration Research, vol. 9, no. 3, pp. 260–267, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Guijarro-Díez, M. C. García, M. L. Marina, and A. L. Crego, “LC-ESI-TOF MS method for the evaluation of the immunostimulating activity of soybeans via the determination of the functional peptide soymetide,” Journal of Agricultural and Food Chemistry, vol. 61, no. 15, pp. 3611–3618, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Guan, P. Li, J. Luo et al., “A deuterohemin peptide extends lifespan and increases stress resistance in Caenorhabditis elegans,” Free Radical Research, vol. 44, no. 7, pp. 813–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Ranjan, J. Gruber, L. F. Ng, and B. Halliwell, “Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in Caenorhabditis elegans,” Free Radical Biology and Medicine, vol. 63, pp. 381–389, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. A. R. Burns, T. C. Y. Kwok, A. Howard et al., “High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans,” Nature Protocols, vol. 1, no. 4, pp. 1906–1914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Gerstbrein, G. Stamatas, N. Kollias, and M. Driscoll, “In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans,” Aging Cell, vol. 4, no. 3, pp. 127–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Zhang, N. Pan, S. Xiong et al., “Inhibition of polyglutamine-mediated proteotoxicity by Astragalus membranaceus polysaccharide through the DAF-16/FOXO transcription factor in Caenorhabditis elegans,” The Biochemical Journal, vol. 441, no. 1, pp. 417–424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Wang, F. Yang, W. Guo et al., “Caenorhabditis elegans in Chinese medicinal studies: making the case for aging and neurodegeneration,” Rejuvenation Research, vol. 17, no. 2, pp. 205–208, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. M. V. Smith, W. A. Boyd, G. E. Kissling et al., “A discrete time model for the analysis of medium-throughput C. elegans growth data,” PLoS ONE, vol. 4, no. 9, Article ID e7018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. H. Panowski, S. Wolff, H. Aguilaniu, J. Durieux, and A. Dillin, “PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans,” Nature, vol. 447, no. 7144, pp. 550–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Shalini, L. Dorstyn, C. Wilson, J. Puccini, L. Ho, and S. Kumar, “Impaired antioxidant defence and accumulation of oxidative stress in caspase-2-deficient mice,” Cell Death and Differentiation, vol. 19, no. 8, pp. 1370–1380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Rodriguez, L. Basten Snoek, M. De Bono, and J. E. Kammenga, “Worms under stress: C. elegans stress response and its relevance to complex human disease and aging,” Trends in Genetics, vol. 29, no. 6, pp. 367–374, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Ayyadevara, P. Bharill, A. Dandapat et al., “Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans,” Antioxidants and Redox Signaling, vol. 18, no. 5, pp. 481–490, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Wu, J. Ming, R. Gao et al., “Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan,” Journal of Agricultural and Food Chemistry, vol. 59, no. 19, pp. 10737–10746, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Duthie and P. Morrice, “Antioxidant capacity of flavonoids in hepatic microsomes is not reflected by antioxidant effects in vivo,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 165127, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. P. B. L. Pun, J. Gruber, S. Y. Tang et al., “Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans?” Biogerontology, vol. 11, no. 1, pp. 17–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. N. Sampayo, A. Olsen, and G. J. Lithgow, “Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics,” Aging Cell, vol. 2, no. 6, pp. 319–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. Z.-J. Qian, W.-K. Jung, H.-G. Byun, and S.-K. Kim, “Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage,” Bioresource Technology, vol. 99, no. 9, pp. 3365–3371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Zhang, T.-H. Mu, and M.-J. Sun, “Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by Alcalase,” Journal of Functional Foods, vol. 7, no. 1, pp. 191–200, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. N. S. Sampath Kumar, R. A. Nazeer, and R. Jaiganesh, “Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber),” Amino Acids, vol. 42, no. 5, pp. 1641–1649, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Martorell, E. Bataller, S. Llopis et al., “A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity,” PLoS ONE, vol. 8, no. 5, Article ID e63283, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. C. F. Labuschagne, E. C. A. Stigter, M. M. W. B. Hendriks et al., “Quantification of in vivo oxidative damage in Caenorhabditis elegans during aging by endogenous F3-isoprostane measurement,” Aging Cell, vol. 12, no. 2, pp. 214–223, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. S. Kim, H. W. Seo, M.-H. Lee, D. K. Kim, H. Jeon, and D. S. Cha, “Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans,” Archives of Pharmacal Research, vol. 37, no. 2, pp. 245–252, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Nielsen, B. B. Mikkelsen, J. B. Nielsen, H. R. Andersen, and P. Grandjean, “Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors,” Clinical Chemistry, vol. 43, no. 7, pp. 1209–1214, 1997. View at Google Scholar · View at Scopus
  39. A. Terman and U. T. Brunk, “Lipofuscin,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 8, pp. 1400–1404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Zhang, T. Lv, M. Li et al., “Beneficial effects of wheat gluten hydrolysate to extend lifespan and induce stress resistance in nematode Caenorhabditis elegans,” PLoS ONE, vol. 8, no. 9, Article ID e74553, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. G. L. Sutphin and M. Kaeberlein, “Dietary restriction by bacterial deprivation increases life span in wild-derived nematodes,” Experimental Gerontology, vol. 43, no. 3, pp. 130–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. B. T. Moore, J. M. Jordan, and L. R. Baugh, “WormSizer: high-throughput analysis of nematode size and shape,” PLoS ONE, vol. 8, no. 2, Article ID e57142, 2013. View at Publisher · View at Google Scholar · View at Scopus