Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 8961951, 9 pages
http://dx.doi.org/10.1155/2016/8961951
Review Article

Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System

1Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
2Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
3Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China

Received 15 September 2015; Accepted 28 October 2015

Academic Editor: Jin-Song Bian

Copyright © 2016 Yaqian Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Woerman and D. Mendelowitz, “Perinatal sulfur dioxide exposure alters brainstem parasympathetic control of heart rate,” Cardiovascular Research, vol. 99, no. 1, pp. 16–23, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. K.-B. Min, J.-Y. Min, S.-I. Cho, and D. Paek, “The relationship between air pollutants and heart-rate variability among community residents in Korea,” Inhalation Toxicology, vol. 20, no. 4, pp. 435–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. P. Singer and E. B. Kearney, “Intermediary metabolism of L-cysteinesulfinic acid in animal tissues,” Archives of Biochemistry and Biophysics, vol. 61, no. 2, pp. 397–409, 1956. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Li and P. K. Moore, “An overview of the biological significance of endogenous gases: new roles for old molecules,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1138–1141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. E. Barañano, C. D. Ferris, and S. H. Snyder, “Atypical neural messengers,” Trends in Neurosciences, vol. 24, no. 2, pp. 99–106, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Shapiro, “Genetic effects of bisulfite (sulfur dioxide),” Mutation Research, vol. 39, no. 2, pp. 149–175, 1977. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Mottley, T. B. Trice, and R. P. Mason, “Direct detection of the sulfur trioxide radical anion during the horseradish peroxidase-hydrogen peroxide oxidation of sulfite (aqueous sulfur dioxide),” Molecular Pharmacology, vol. 22, no. 3, pp. 732–737, 1982. View at Google Scholar · View at Scopus
  8. G. A. Reed, M. J. Ryan, and K. S. Adams, “Sulfite enhancement of diolepoxide mutagenicity: the role of altered glutathione metabolism,” Carcinogenesis, vol. 11, no. 9, pp. 1635–1639, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Ji, S. R. Savon, and D. W. Jacobsen, “Determination of total serum sulfite by HPLC with fluorescence detection,” Clinical Chemistry, vol. 41, no. 6, part 1, pp. 897–903, 1995. View at Google Scholar · View at Scopus
  10. H. Kajiyama, Y. Nojima, H. Mitsuhashi et al., “Elevated levels of serum sulfite in patients with chronic renal failure,” Journal of the American Society of Nephrology, vol. 11, no. 5, pp. 923–927, 2000. View at Google Scholar · View at Scopus
  11. H. Mitsuhashi, H. Ikeuchi, S. Yamashita et al., “Increased levels of serum sulfite in patients with acute pneumonia,” Shock, vol. 21, no. 2, pp. 99–102, 2004. View at Google Scholar · View at Scopus
  12. W. S. Wu, Y. R. Jia, S. X. Du, H. Tang, Y. L. Sun, and L. M. Sun, “Changes of sulfur dioxide, nuclear factor-κB, and interleukin-8 levels in pediatric acute lymphoblastic leukemia with bacterial inflammation,” Chinese Medical Journal, vol. 127, no. 23, pp. 4110–4113, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Balazy, I. A. Abu-Yousef, D. N. Harpp, and J. Park, “Identification of carbonyl sulfide and sulfur dioxide in porcine coronary artery by gas chromatography/mass spectrometry, possible relevance to EDHF,” Biochemical and Biophysical Research Communications, vol. 311, no. 3, pp. 728–734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S.-X. Du, H.-F. Jin, D.-F. Bu et al., “Endogenously generated sulfur dioxide and its vasorelaxant effect in rats,” Acta Pharmacologica Sinica, vol. 29, no. 8, pp. 923–930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Zhao, H.-F. Jin, C.-S. Tang, and J.-B. Du, “Effects of sulfur dioxide, on the proliferation and apoptosis of aorta smooth muscle cells in hypertension: experiments with rats,” Zhonghua Yi Xue Za Zhi, vol. 88, no. 18, pp. 1279–1283, 2008. View at Google Scholar · View at Scopus
  16. Y. Sun, Y. Tian, M. Prabha et al., “Effects of sulfur dioxide on hypoxic pulmonary vascular structural remodeling,” Laboratory Investigation, vol. 90, no. 1, pp. 68–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Li, C. Tang, H. Jin, and J. Du, “Regulatory effects of sulfur dioxide on the development of atherosclerotic lesions and vascular hydrogen sulfide in atherosclerotic rats,” Atherosclerosis, vol. 215, no. 2, pp. 323–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. X.-B. Wang, X.-M. Huang, T. Ochs et al., “Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injury by inducing endoplasmic reticulum stress,” Basic Research in Cardiology, vol. 106, no. 5, pp. 865–878, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Li, F. W. Bazer, H. Gao et al., “Amino acids and gaseous signaling,” Amino Acids, vol. 37, no. 1, pp. 65–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Z.-Q. Meng and J.-L. Li, “Progress in sulfur dioxide biology: from toxicology to physiology,” Sheng Li Xue Bao, vol. 63, no. 6, pp. 593–600, 2011. View at Google Scholar · View at Scopus
  21. H. Tian, “Advances in the study on endogenous sulfur dioxide in the cardiovascular system,” Chinese Medical Journal, vol. 127, no. 21, pp. 3803–3807, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. M. H. Stipanuk, “Metabolism of sulfur-containing amino acids,” Annual Review of Nutrition, vol. 6, pp. 179–209, 1986. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Mitsuhashi, S. Yamashita, H. Ikeuchi et al., “Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils,” Shock, vol. 24, no. 6, pp. 529–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Kamoun, “Endogenous production of hydrogen sulfide in mammals,” Amino Acids, vol. 26, no. 3, pp. 243–254, 2004. View at Google Scholar · View at Scopus
  25. K. Qu, S. W. Lee, J. S. Bian, C.-M. Low, and P. T.-H. Wong, “Hydrogen sulfide: neurochemistry and neurobiology,” Neurochemistry International, vol. 52, no. 1, pp. 155–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Li and Z. Meng, “The role of sulfur dioxide as an endogenous gaseous vasoactive factor in synergy with nitric oxide,” Nitric Oxide, vol. 20, no. 3, pp. 166–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Meng, J. Li, Q. Zhang et al., “Vasodilator effect of gaseous sulfur dioxide and regulation of its level by Ach in rat vascular tissues,” Inhalation Toxicology, vol. 21, no. 14, pp. 1223–1228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Meng, H. Geng, J. Bai, and G. Yan, “Blood pressure of rats lowered by sulfur dioxide and its derivatives,” Inhalation Toxicology, vol. 15, no. 9, pp. 951–959, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Zhang and Z. Meng, “The vasodilator mechanism of sulfur dioxide on isolated aortic rings of rats: involvement of the K+ and Ca2+ channels,” European Journal of Pharmacology, vol. 602, no. 1, pp. 117–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Zhang, J. Tian, Y. Bai et al., “Effects of gaseous sulfur dioxide and its derivatives on the expression of KATP, BKCa and L-Ca2+ channels in rat aortas in vitro,” European Journal of Pharmacology, vol. 742, pp. 31–41, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Meng, Y. Li, and J. Li, “Vasodilatation of sulfur dioxide derivatives and signal transduction,” Archives of Biochemistry and Biophysics, vol. 467, no. 2, pp. 291–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Meng and H. Zhang, “The vasodilator effect and its mechanism of sulfur dioxide-derivatives on isolated aortic rings of rats,” Inhalation Toxicology, vol. 19, no. 11, pp. 979–986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Meng, Z. Yang, J. Li, and Q. Zhang, “The vasorelaxant effect and its mechanisms of sodium bisulfite as a sulfur dioxide donor,” Chemosphere, vol. 89, no. 5, pp. 579–584, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Li, R. Li, and Z. Meng, “Sulfur dioxide upregulates the aortic nitric oxide pathway in rats,” European Journal of Pharmacology, vol. 645, no. 1–3, pp. 143–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Q. Zhang, J. B. Du, Y. Tian, B. Geng, C. S. Tang, and X. Y. Tang, “Effects of sulfur dioxide on cardiac function of isolated perfusion heart of rat,” Zhonghua Yi Xue Za Zhi, vol. 88, no. 12, pp. 830–834, 2008. View at Google Scholar
  36. Q. Zhang and Z. Meng, “The negative inotropic effects of gaseous sulfur dioxide and its derivatives in the isolated perfused rat heart,” Environmental Toxicology, vol. 27, no. 3, pp. 175–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Zhang, Y. Bai, Z. Yang, J. Tian, and Z. Meng, “Effect of sulfur dioxide inhalation on the expression of KATP and L-Ca2+ channels in rat hearts,” Environmental Toxicology and Pharmacology, vol. 39, no. 3, pp. 1132–1138, 2015. View at Publisher · View at Google Scholar
  38. R.-Y. Zhang, J.-B. Du, Y. Sun et al., “Sulfur dioxide derivatives depress L-type calcium channel in rat cardiomyocytes,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 7, pp. 416–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. T. Drew, R. S. Kutzman, D. L. Costa, and J. Iwai, “Effects of sulfur dioxide and ozone on hypertension sensitive and resistant rats,” Fundamental and Applied Toxicology, vol. 3, no. 4, pp. 298–302, 1983. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Lu, Y. Sun, C. Tang et al., “Sulfur dioxide derivatives improve the vasorelaxation in the spontaneously hypertensive rat by enhancing the vasorelaxant response to nitric oxide,” Experimental Biology and Medicine, vol. 237, no. 7, pp. 867–872, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. H. D. Intengan and E. L. Schiffrin, “Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis,” Hypertension, vol. 38, no. 3, pp. 581–587, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. C. Fung, “What are the residual stresses doing in our blood vessels?” Annals of Biomedical Engineering, vol. 19, no. 3, pp. 237–249, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Liu, Y. Huang, D. Bu et al., “Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling,” Cell Death & Disease, vol. 5, Article ID e1251, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Yang, Y. Yang, X. Dong, X. Wu, and Y. Wei, “Correlation between endogenous sulfur dioxide and homocysteine in children with pulmonary arterial hypertension associated with congenital heart disease,” Zhonghua Er Ke Za Zhi, vol. 52, no. 8, pp. 625–629, 2014. View at Google Scholar · View at Scopus
  45. Y. Tian, X.-Y. Tang, H.-F. Jin, C.-S. Tang, and J.-B. Du, “Effect of sulfur dioxide on pulmonary vascular structure of hypoxic pulmonary hypertensive rats,” Chinese Journal of Pediatrics, vol. 46, no. 9, pp. 675–679, 2008. View at Google Scholar · View at Scopus
  46. V. Amsellem, L. Lipskaia, S. Abid et al., “CCR5 as a treatment target in pulmonary arterial hypertension,” Circulation, vol. 130, no. 11, pp. 880–891, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. H.-F. Jin, S.-X. Du, X. Zhao et al., “Effects of endogenous sulfur dioxide on monocrotaline-induced pulmonary hypertension in rats,” Acta Pharmacologica Sinica, vol. 29, no. 10, pp. 1157–1166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. M. Aziz, M. Toborek, B. Hennig, E. Endean, and D. W. Lipke, “Polyamine regulatory processes and oxidative stress in monocrotaline-treated pulmonary artery endothelial cells,” Cell Biology International, vol. 21, no. 12, pp. 801–812, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. J. I. E. Hoffman, A. M. Rudolph, and M. A. Heymann, “Pulmonary vascular disease with congenital heart lesions: pathologic features and causes,” Circulation, vol. 64, no. 5, pp. 873–877, 1981. View at Publisher · View at Google Scholar · View at Scopus
  50. C.-F. Lam, T. E. Peterson, A. J. Croatt, K. A. Nath, and Z. S. Katusic, “Functional adaptation and remodeling of pulmonary artery in flow-induced pulmonary hypertension,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 289, no. 6, pp. H2334–H2341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Luo, D. Liu, C. Tang et al., “Sulfur dioxide upregulates the inhibited endogenous hydrogen sulfide pathway in rats with pulmonary hypertension induced by high pulmonary blood flow,” Biochemical and Biophysical Research Communications, vol. 433, no. 4, pp. 519–525, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Brüske, R. Hampel, Z. Baumgärtner et al., “Ambient air pollution and lipoprotein-associated phospholipase A2 in survivors of myocardial infarction,” Environmental Health Perspectives, vol. 119, no. 7, pp. 921–926, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Lenters, C. S. Uiterwaal, R. Beelen et al., “Long-term exposure to air pollution and vascular damage in young adults,” Epidemiology, vol. 21, no. 4, pp. 512–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Liu, Z. He, L. Wu, and Y. Fang, “Effects of induction/inhibition of endogenous heme oxygenase-1 on lipid metabolism, endothelial function, and atherosclerosis in rabbits on a high fat diet,” Journal of Pharmacological Sciences, vol. 118, no. 1, pp. 14–24, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Wang, X. Zhao, H. Jin et al., “Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 2, pp. 173–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. T. P. Vacek, S. Rahman, S. Yu, D. Neamtu, S. Givimani, and S. C. Tyagi, “Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms,” Vascular Health and Risk Management, vol. 11, pp. 173–183, 2015. View at Publisher · View at Google Scholar
  57. Y. Shen, Z. Shen, S. Luo, W. Guo, and Y. Z. Zhu, “The cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 925167, 13 pages, 2015. View at Publisher · View at Google Scholar
  58. H. S. Kim, K.-A. Kong, H. Chung, S. Park, and M. H. Kim, “ER stress induces the expression of Jpk, which inhibits cell cycle progression in F9 teratocarcinoma cell,” Annals of the New York Academy of Sciences, vol. 1095, pp. 76–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. S.-E. Choi, Y.-J. Lee, H.-J. Jang et al., “A chemical chaperone 4-PBA ameliorates palmitate-induced inhibition of glucose-stimulated insulin secretion (GSIS),” Archives of Biochemistry and Biophysics, vol. 475, no. 2, pp. 109–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M.-M. Zhao, J.-Y. Yang, X.-B. Wang, C.-S. Tang, J.-B. Du, and H.-F. Jin, “The PI3K/Akt pathway mediates the protection of SO2 preconditioning against myocardial ischemia/reperfusion injury in rats,” Acta Pharmacologica Sinica, vol. 34, no. 4, pp. 501–506, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. H. F. Jin, Y. Wang, X. B. Wang, Y. Sun, C. S. Tang, and J. B. Du, “Sulfur dioxide preconditioning increases antioxidative capacity in rat with myocardial ischemia reperfusion (I/R) injury,” Nitric Oxide—Biology and Chemistry, vol. 32, pp. 56–61, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Huang, Y. Sun, J. Yang et al., “The ERK1/2 signaling pathway is involved in sulfur dioxide preconditioning-induced protection against cardiac dysfunction in isolated perfused rat heart subjected to myocardial ischemia/reperfusion,” International Journal of Molecular Sciences, vol. 14, no. 11, pp. 22190–22201, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Liang, D. Liu, T. Ochs et al., “Endogenous sulfur dioxide protects against isoproterenol-induced myocardial injury and increases myocardial antioxidant capacity in rats,” Laboratory Investigation, vol. 91, no. 1, pp. 12–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. A. A. Noronha-Dutra, E. M. Steen-Dutra, and N. Woolf, “Epinephrine-induced cytotoxicity of rat plasma. Its effects on isolated cardiac myocytes,” Laboratory Investigation, vol. 59, no. 6, pp. 817–823, 1988. View at Google Scholar · View at Scopus
  65. C. W. Younce and P. E. Kolattukudy, “MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP,” Biochemical Journal, vol. 426, no. 1, pp. 43–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Chen, J. Du, Y. Liang et al., “Sulfur dioxide inhibits excessively activated endoplasmic reticulum stress in rats with myocardial injury,” Heart and Vessels, vol. 27, no. 5, pp. 505–516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Jin, A. D. Liu, L. Holmberg et al., “The role of sulfur dioxide in the regulation of mitochondrion-related cardiomyocyte apoptosis in rats with isopropylarterenol-induced myocardial injury,” International Journal of Molecular Sciences, vol. 14, no. 5, pp. 10465–10482, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Chen, J. Du, Y. Liang, R. Zhang, C. Tang, and H. Jin, “Sulfur dioxide restores calcium homeostasis disturbance in rat with isoproterenol-induced myocardial injury,” Histology and Histopathology, vol. 27, no. 9, pp. 1219–1226, 2012. View at Google Scholar · View at Scopus
  69. A. Nie and Z. Meng, “Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives,” Food and Chemical Toxicology, vol. 44, no. 3, pp. 355–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Nie and Z. Meng, “Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes,” Archives of Biochemistry and Biophysics, vol. 442, no. 2, pp. 187–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. X.-B. Wang, H.-F. Jin, C.-S. Tang, and J.-B. Du, “The biological effect of endogenous sulfur dioxide in the cardiovascular system,” European Journal of Pharmacology, vol. 670, no. 1, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S.-Y. Chen, H.-F. Jin, Y. Sun, Y. Tian, C.-S. Tang, and J.-B. Du, “Impact of sulfur dioxide on hydrogen sulfide/cystathionine-γ-lyase and hydrogen sulfide/mercaptopyruvate sulfurtransferase pathways in the pathogenesis of hypoxic pulmonary hypertension in rats,” Zhonghua Er Ke Za Zhi, vol. 49, no. 12, pp. 890–894, 2011. View at Google Scholar · View at Scopus
  73. Y. K. Wang, A. J. Ren, X. Q. Yang et al., “Sulfur dioxide relaxes rat aorta by endothelium-dependent and -independent mechanisms,” Physiological Research, vol. 58, no. 4, pp. 521–527, 2009. View at Google Scholar · View at Scopus
  74. H.-J. Ma, X.-L. Huang, Y. Liu, and Y.-M. Fan, “Sulfur dioxide attenuates LPS-induced acute lung injury via enhancing polymorphonuclear neutrophil apoptosis,” Acta Pharmacologica Sinica, vol. 33, no. 8, pp. 983–990, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. J. L. Hart, “Role of sulfur-containing gaseous substances in the cardiovascular system,” Frontiers in Bioscience (Elite Edition), vol. 3, no. 2, pp. 736–749, 2011. View at Publisher · View at Google Scholar · View at Scopus