Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 9785890, 19 pages
http://dx.doi.org/10.1155/2016/9785890
Research Article

Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo

1Electron Microscopy Laboratory, Wroclaw University of Environmental and Life Sciences, 5b Kozuchowska Street, 51-631 Wroclaw, Poland
2Wroclaw Research Centre EIT+, 147 Stablowicka Street, 54-066 Wroclaw, Poland
3Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, 31-034 Krakow, Poland
4Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 Mickiewicza Street, 30059 Krakow, Poland
5Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 Norwida Street, 50-375 Wroclaw, Poland

Received 28 December 2015; Revised 24 March 2016; Accepted 30 March 2016

Academic Editor: Ange Mouithys-Mickalad

Copyright © 2016 Krzysztof Marycz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Pugeat and P. H. Ducluzeau, “Insulin resistance, polycystic ovary syndrome and metformin,” Drugs, vol. 58, supplement 1, pp. 41–46, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. V. N. Anisimov, L. M. Berstein, P. A. Egormin et al., “Metformin slows down aging and extends life span of female SHR mice,” Cell Cycle, vol. 7, no. 17, pp. 2769–2773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. C. Baer, “Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro,” World Journal of Stem Cells, vol. 6, no. 3, pp. 256–265, 2014. View at Publisher · View at Google Scholar
  4. I. N. Alimova, B. Liu, Z. Fan et al., “Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro,” Cell Cycle, vol. 8, no. 6, pp. 909–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Karnevi, K. Said, R. Andersson, and A. H. Rosendahl, “Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells,” BMC Cancer, vol. 13, article 235, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Giovannucci, D. M. Harlan, M. C. Archer et al., “Diabetes and cancer: a consensus report,” Diabetes Care, vol. 33, no. 7, pp. 1674–1685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Luo, D. Hu, S. Hu, M. Yan, Z. Sun, and F. Chen, “In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma,” BMC Cancer, vol. 12, article 517, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Liu, Z. Fan, S. M. Edgerton et al., “Metformin induces unique biological and molecular responses in triple negative breast cancer cells,” Cell Cycle, vol. 8, no. 13, pp. 2031–2040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. A. Hirsch, D. Iliopoulos, and K. Struhl, “Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 3, pp. 972–977, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-P. Chen, J.-J. Shieh, C.-C. Chang et al., “Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies,” Gut, vol. 62, no. 4, pp. 606–615, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. D. G. Hardie, “Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease,” FEBS Letters, vol. 582, no. 1, pp. 81–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S.-N. Li, X. Wang, Q.-T. Zeng et al., “Metformin inhibits nuclear factor κb activation and decreases serum high-sensitivity C-reactive protein level in experimental atherogenesis of rabbits,” Heart and Vessels, vol. 24, no. 6, pp. 446–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Kim and H. C. Choi, “Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 425, no. 4, pp. 866–872, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. V. J. Thannickal and B. L. Fanburg, “Reactive oxygen species in cell signaling,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 279, no. 6, pp. L1005–L1028, 2000. View at Google Scholar · View at Scopus
  15. M. Mahrouf, N. Ouslimani, J. Peynet et al., “Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein kinase C,” Biochemical Pharmacology, vol. 72, no. 2, pp. 176–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Owen, E. Doran, and A. P. Halestrap, “Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain,” Biochemical Journal, vol. 348, no. 3, pp. 607–614, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Cortizo, C. Sedlinsky, A. D. McCarthy, A. Blanco, and L. Schurman, “Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture,” European Journal of Pharmacology, vol. 536, no. 1-2, pp. 38–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, and T. Sugimoto, “Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression,” Biochemical and Biophysical Research Communications, vol. 375, no. 3, pp. 414–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Śmieszek, A. Czyrek, K. Basinska et al., “Effect of metformin on viability, morphology, and ultrastructure of mouse bone marrow-derived multipotent mesenchymal stromal cells and Balb/3T3 embryonic fibroblast cell line,” BioMed Research International, vol. 2015, Article ID 769402, 14 pages, 2015. View at Publisher · View at Google Scholar
  20. T. V. Kourelis and R. D. Siegel, “Metformin and cancer: new applications for an old drug,” Medical Oncology, vol. 29, no. 2, pp. 1314–1327, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, and F. Andreelli, “Cellular and molecular mechanisms of metformin: an overview,” Clinical Science, vol. 122, no. 6, pp. 253–270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Teti, “Bone development: overview of bone cells and signaling,” Current Osteoporosis Reports, vol. 9, no. 4, pp. 264–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Schoengraf, J. D. Lambris, S. Recknagel et al., “Does complement play a role in bone development and regeneration?” Immunobiology, vol. 218, no. 1, pp. 1–9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Gao, Y. Li, J. Xue, Y. Jia, and J. Hu, “Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats,” European Journal of Pharmacology, vol. 635, no. 1–3, pp. 231–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Sedlinsky, M. S. Molinuevo, A. M. Cortizo et al., “Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats,” European Journal of Pharmacology, vol. 668, no. 3, pp. 477–485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Wang, H. Li, S.-G. Chen et al., “The skeletal effects of thiazolidinedione and metformin on insulin-resistant mice,” Journal of Bone and Mineral Metabolism, vol. 30, no. 6, pp. 630–637, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Grzesiak, K. Marycz, J. Czogala, K. Wrzeszcz, and J. Nicpon, “Comparison of behavior, morphology and morphometry of equine and canine adipose derived mesenchymal stem cells in culture,” International Journal of Morphology, vol. 29, no. 3, pp. 1012–1017, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Chen, Y. Zhou, and W.-S. Tan, “Influence of lactic acid on the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells,” Cell Biology and Toxicology, vol. 25, no. 6, pp. 573–586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” Journal of the Optical Society of America A: Optics, Image Science, and Vision, vol. 1, no. 6, pp. 612–619, 1984. View at Publisher · View at Google Scholar
  30. Volume Graphics GmbH, Reference Manual VGStudio Max Release 2.0, Volume Graphics GmbH, 2013, http://www.volumegraphics.com/en/products/vgstudio-max/.
  31. http://fiji.sc/Fiji.
  32. M. Doube, M. M. Kłosowski, I. Arganda-Carreras et al., “BoneJ: free and extensible bone image analysis in ImageJ,” Bone, vol. 47, no. 6, pp. 1076–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Zakikhani, R. Dowling, I. G. Fantus, N. Sonenberg, and M. Pollak, “Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells,” Cancer Research, vol. 66, Article ID 10269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Kalra, R. Sahay, and A. Unnikrishnan, “Metformin and the promise of geroprotection,” Indian Journal of Endocrinology and Metabolism, vol. 16, no. 4, pp. 496–498, 2012. View at Publisher · View at Google Scholar
  35. A. Śmieszek, K. Basińska, K. Chrząstek, and K. Marycz, “In vitro and in vivo effects of metformin on osteopontin expression in mice adipose-derived multipotent stromal cells and adipose tissue,” Journal of Diabetes Research, vol. 2015, Article ID 814896, 16 pages, 2015. View at Publisher · View at Google Scholar
  36. D. van Heemst, “Insulin, IGF-1 and longevity,” Aging and Disease, vol. 1, no. 2, pp. 147–157, 2010. View at Google Scholar · View at Scopus
  37. J. Nicpoń, K. Marycz, and J. Grzesiak, “Therapeutic effect of adipose-derived mesenchymal stem cell injection in horses suffering from bone spavin,” Polish Journal of Veterinary Sciences, vol. 16, no. 4, pp. 753-754, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Gao, J. Xue, X. Li, Y. Jia, and J. Hu, “Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells,” Journal of Pharmacy and Pharmacology, vol. 60, no. 12, pp. 1695–1700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C.-F. Sum, J. M. Webster, A. B. Johnson, C. Catalano, B. G. Cooper, and R. Taylor, “The effect of intravenous metformin on glucose metabolism during hyperglycaemia in Type 2 diabetes,” Diabetic Medicine, vol. 9, no. 1, pp. 61–65, 1992. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Z. Ratajczak, “The emerging role of microvesicles in cellular therapies for organ/tissue regeneration,” Nephrology Dialysis Transplantation, vol. 26, no. 5, pp. 1453–1456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. P. K. Mattila and P. Lappalainen, “Filopodia: molecular architecture and cellular functions,” Nature Reviews Molecular Cell Biology, vol. 9, no. 6, pp. 446–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Algire, O. Moiseeva, X. Deschênes-Simard et al., “Metformin reduces endogenous reactive oxygen species and associated DNA damage,” Cancer Prevention Research, vol. 5, no. 4, pp. 536–543, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Hou, J. Song, X.-N. Li et al., “Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway,” Biochemical and Biophysical Research Communications, vol. 396, no. 2, pp. 199–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Kornicka, B. Babiarczuk, J. Krzak, and K. Marycz, “The effect of a sol–gel derived silica coating doped with vitamin E on oxidative stress and senescence of human adipose-derived mesenchymal stem cells (AMSCs),” RSC Advances, vol. 6, no. 35, pp. 29524–29537, 2016. View at Publisher · View at Google Scholar
  45. K. Marycz, K. Kornicka, K. Basinska, and A. Czyrek, “Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: new insight into EqASCs isolated from ems horses in the context of their aging,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 4710326, 17 pages, 2016. View at Publisher · View at Google Scholar
  46. M. S. Choudhery, M. Badowski, A. Muise, J. Pierce, and D. T. Harris, “Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation,” Journal of Translational Medicine, vol. 12, article 8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Marędziak, K. Marycz, K. A. Tomaszewski, K. Kornicka, and B. M. Henry, “The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells,” Stem Cells International, vol. 2016, Article ID 2152435, 15 pages, 2016. View at Publisher · View at Google Scholar
  48. K. Kornicka, K. Marycz, K. A. Tomaszewski, M. Marędziak, and A. Śmieszek, “The effect of age on osteogenic and adipogenic differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress factors in the course of the differentiation process,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 309169, 20 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. W. G. Jang, E. J. Kim, I.-H. Bae et al., “Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2,” Bone, vol. 48, no. 4, pp. 885–893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Shah, B. Kola, A. Bataveljic et al., “AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass,” Bone, vol. 47, no. 2, pp. 309–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Zhen, Y. Chen, and X. Tang, “Metformin reverses the deleterious effects of high glucose on osteoblast function,” Journal of Diabetes and Its Complications, vol. 24, no. 5, pp. 334–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Wu, Z. Ye, Y. Zhou, and W.-S. Tan, “AICAR, a small chemical molecule, primes osteogenic differentiation of adult mesenchymal stem cells,” International Journal of Artificial Organs, vol. 34, no. 12, pp. 1128–1136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Kasai, K. Bandow, H. Suzuki et al., “Osteoblast differentiation is functionally associated with decreased AMP kinase activity,” Journal of Cellular Physiology, vol. 221, no. 3, pp. 740–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Jeyabalan, B. Viollet, P. Smitham et al., “The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing,” Osteoporosis International, vol. 24, no. 10, pp. 2659–2670, 2013. View at Publisher · View at Google Scholar · View at Scopus