Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 1625130, 10 pages
https://doi.org/10.1155/2017/1625130
Research Article

Impact of Atherosclerosis- and Diabetes-Related Dicarbonyls on Vascular Endothelial Permeability: A Comparative Assessment

1Russian Cardiology Research and Production Complex, Ministry of Healthcare of Russian Federation, 3rd Cherepkovskaya St. 15a, Moscow 121552, Russia
2Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27, Moscow 119192, Russia

Correspondence should be addressed to Vladimir P. Shirinsky; moc.liamg@yksnirihs

Received 1 March 2017; Revised 31 May 2017; Accepted 10 September 2017; Published 2 October 2017

Academic Editor: Silvana Hrelia

Copyright © 2017 Mikhail V. Samsonov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Jenkins, M. A. Hill, and K. G. Rowley, “Diabetes and oxidant stress,” Atherosclerosis and Oxidant Stress, Springer Science and Business Media, New York, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Molecular and Cellular Biochemistry, vol. 395, no. 1–2, pp. 241–252, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Lykkesfeldt, “Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking,” Clinica Chimica Acta, vol. 380, no. 1–2, pp. 50–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. N. Lange, K. D. Wood, J. Knight, D. G. Assimos, and R. P. Holmes, “Glyoxal formation and its role in endogenous oxalate synthesis,” Advances in Urology, vol. 2012, Article ID 819202, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Simm, “Protein glycation during aging and in cardiovascular disease,” Journal of Proteomics, vol. 92, pp. 248–259, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ayala, M. F. Munoz, and S. Arguelles, “Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal,” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 360438, 31 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Z. Lankin, G. G. Konovalova, A. K. Tikhaze et al., “Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients,” Journal of Diabetes, vol. 8, no. 3, pp. 398–404, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. Kumskova, O. A. Antonova, S. A. Balashov, A. K. Tikhaze, A. M. Melkumyants, and V. Z. Lankin, “Malonyldialdehyde and glyoxal act differently on low-density lipoproteins and endotheliocytes,” Molecular and Cellular Biochemistry, vol. 396, no. 1-2, pp. 79–85, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. Sliman, T. D. Eubank, S. R. Kotha et al., “Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: aminoguanidine protection,” Molecular and Cellular Biochemistry, vol. 333, no. 1–2, pp. 9–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. E. Toth, A. Toth, F. R. Walter et al., “Compounds blocking methylglyoxal-induced protein modification and brain endothelial injury,” Archives of Medical Research, vol. 45, no. 8, pp. 753–764, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. A. E. Toth, F. R. Walter, A. Bocsik et al., “Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells,” PLoS One, vol. 9, no. 7, article e100152, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. F. W. Chaplen, W. E. Fahl, and D. C. Cameron, “Method for determination of free intracellular and extracellular methylglyoxal in animal cells grown in culture,” Analytical Biochemistry, vol. 238, no. 2, pp. 171–178, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Requena, M. X. Fu, M. U. Ahmed et al., “Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein,” The Biochemical Journal, vol. 322, Part 1, pp. 317–325, 1997. View at Publisher · View at Google Scholar
  14. C. J. Edgell, C. C. McDonald, and J. B. Graham, “Permanent cell line expressing human factor VIII-related antigen established by hybridization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 12, pp. 3734–3737, 1983. View at Publisher · View at Google Scholar
  15. A. Khapchaev, M. V. Samsonov, O. A. Kazakova et al., “Suppression of vascular endothelium hyperpermeability by cell-permeating peptide inhibitors of myosin light chain kinase,” Biofizika, vol. 57, no. 5, pp. 764–770, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. A. V. Marchenko, M. V. Sidorova, A. V. Sekridova et al., “Penetrating peptide inhibitor of the myosin light chain kinase suppresses hyperpermeability of vascular endothelium,” Rossiĭskii Fiziologicheskiĭ Zhurnal Imeni I.M. Sechenova, vol. 95, pp. 507–515, 2009. View at Google Scholar
  17. V. Z. Lankin, O. I. Afanasieva, G. G. Konovalova et al., “Modification of lipoprotein(a) by natural dicarbonyls induced their following free radical peroxidation,” Doklady Biochemistry and Biophysics, vol. 441, pp. 287–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. E. V. Yanushevskaya, N. V. Valentinova, N. V. Medvedeva, A. D. Morozkin, and T. N. Vlasik, “Low density lipoprotein heterogeneity tested by monoclonal antibodies,” Angiology and Vascular Surgery, vol. 5, pp. 241–249, 1999. View at Google Scholar
  19. D. S. Kudryashov, O. V. Stepanova, E. L. Vilitkevich et al., “Myosin light chain kinase (210 kDa) is a potential cytoskeleton integrator through its unique N-terminal domain,” Experimental Cell Research, vol. 298, no. 2, pp. 407–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Publisher · View at Google Scholar
  22. J. L. Scheijen and C. G. Schalkwijk, “Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen,” Clinical Chemistry and Laboratory Medicine, vol. 52, no. 1, pp. 85–91, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Fleming, J. Cuny, G. Nawroth et al., “Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates?” Diabetologia, vol. 55, no. 4, pp. 1151–1155, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. H. F. Moselhy, R. G. Reid, S. Yousef, and S. P. Boyle, “A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC,” Journal of Lipid Research, vol. 54, no. 3, pp. 852–858, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. W. C. Cho, W. S. Chung, S. K. Lee, A. W. Leung, C. H. Cheng, and K. K. Yue, “Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats,” European Journal of Pharmacology, vol. 550, no. 1–3, pp. 173–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. E. G. Vermeulen, H. W. Niessen, M. Bogels, C. D. Stehouwer, J. A. Rauwerda, and V. W. van Hinsbergh, “Decreased smooth muscle cell/extracellular matrix ratio of media of femoral artery in patients with atherosclerosis and hyperhomocysteinemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 4, pp. 573–577, 2001. View at Publisher · View at Google Scholar
  27. A. R. Hipkiss, J. E. Preston, D. T. Himswoth, V. C. Worthington, and N. J. Abbot, “Protective effects of carnosine against malondialdehyde-induced toxicity towards cultured rat brain endothelial cells,” Neuroscience Letters, vol. 238, no. 3, pp. 135–138, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Mehta and A. B. Malik, “Signaling mechanisms regulating endothelial permeability,” Physiological Reviews, vol. 86, no. 1, pp. 279–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Pamplona, “Advanced lipoxidation end-products,” Chemico-Biological Interactions, vol. 192, no. 1–2, pp. 14–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Zarkovic, A. Cipak, M. Jaganjac, S. Borovic, and K. Zarkovic, “Pathophysiological relevance of aldehydic protein modifications,” Journal of Proteomics, vol. 92, pp. 239–247, 2013. View at Publisher · View at Google Scholar · View at Scopus