Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 2697364, 15 pages
https://doi.org/10.1155/2017/2697364
Research Article

VLDL Induced Modulation of Nitric Oxide Signalling and Cell Redox Homeostasis in HUVEC

1Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
2Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
3Blood Transfusion Service and Hematology, Umberto I Hospital, Rome, Italy
4Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Brussels, Belgium

Correspondence should be addressed to Graciela Cristina Calabrese; ra.abu.byff@ebalacg and Marzia Arese; ti.1amorinu@esera.aizram

Received 21 April 2017; Revised 31 July 2017; Accepted 15 August 2017; Published 20 September 2017

Academic Editor: Vicenta L. Cortes

Copyright © 2017 Maria Chiara Magnifico et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Nakashima, T. N. Wight, and K. Sueishi, “Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans,” Cardiovascular Research, vol. 79, no. 1, pp. 14–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Tabas, G. Garcia-Cardena, and G. K. Owens, “Recent insights into the cellular biology of atherosclerosis,” The Journal of Cell Biology, vol. 209, no. 1, pp. 13–22, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. H. A. Jensen and J. L. Mehta, “Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis,” Expert Review of Cardiovascular Therapy, vol. 14, no. 9, pp. 1021–1033, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. Rahman, A. J. Murphy, and K. J. Woollard, “Effects of dyslipidaemia on monocyte production and function in cardiovascular disease,” Nature Reviews Cardiology, vol. 14, no. 7, pp. 387–400, 2017. View at Publisher · View at Google Scholar
  5. A. Negre-Salvayre, N. Auge, C. Camare, T. Bacchetti, G. Ferretti, and R. Salvayre, “Dual signaling evoked by oxidized LDLs in vascular cells,” Free Radical Biology & Medicine, vol. 106, pp. 118–133, 2017. View at Publisher · View at Google Scholar
  6. V. Lubrano and S. Balzan, “LOX-1 and ROS, inseparable factors in the process of endothelial damage,” Free Radical Research, vol. 48, no. 8, pp. 841–848, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. V. N. Sukhorukov, V. P. Karagodin, and A. N. Orekhov, “Atherogenic modification of low-density lipoproteins,” Biomeditsinskaya Khimiya, vol. 62, no. 4, pp. 391–402, 2016. View at Google Scholar
  8. K. E. Petersen, J. Lykkesfeldt, K. Raun, and G. Rakipovski, “Brief communication: plasma lipid oxidation predicts atherosclerotic status better than cholesterol in diabetic apolipoprotein E deficient mice,” Experimental Biology and Medicine, vol. 242, no. 1, pp. 88–91, 2017. View at Publisher · View at Google Scholar
  9. G. Ferretti, T. Bacchetti, T. P. Johnston, M. Banach, M. Pirro, and A. Sahebkar, “Lipoprotein(a): a missing culprit in the management of athero-thrombosis?” Journal of Cellular Physiology, 2017. View at Publisher · View at Google Scholar
  10. S. Takahashi, J. Sakai, T. Fujino et al., “The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor,” Journal of Atherosclerosis and Thrombosis, vol. 11, no. 4, pp. 200–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Xie, Y. Duan, X. Guo, L. Hu, and M. Yu, “SalA attenuates hypoxia-induced endothelial endoplasmic reticulum stress and apoptosis via down-regulation of VLDL receptor expression,” Cellular Physiology and Biochemistry, vol. 35, no. 1, pp. 17–28, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D. Norata, A. Pirillo, E. Callegari, A. Hamsten, A. L. Catapano, and P. Eriksson, “Gene expression and intracellular pathways involved in endothelial dysfunction induced by VLDL and oxidised VLDL,” Cardiovascular Research, vol. 59, no. 1, pp. 169–180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Jong, W. L. Hendriks, L. C. van Vark, V. E. Dahlmans, J. E. Groener, and L. M. Havekes, “Oxidized VLDL induces less triglyceride accumulation in J774 macrophages than native VLDL due to an impaired extracellular lipolysis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 1, pp. 144–151, 2000. View at Publisher · View at Google Scholar
  14. L. Wang, R. Gill, T. L. Pedersen, L. J. Higgins, J. W. Newman, and J. C. Rutledge, “Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation,” Journal of Lipid Research, vol. 50, no. 2, pp. 204–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Kita, N. Kume, M. Minami et al., “Role of oxidized LDL in atherosclerosis,” Annals of the New York Academy of Sciences, vol. 947, pp. 199–205, 2001. View at Google Scholar
  16. V. Mollace, M. Gliozzi, V. Musolino et al., “Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: role of oxidative stress and LOX-1 receptor expression,” International Journal of Cardiology, vol. 184, pp. 152–158, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. D. P. Hajjar and A. M. Gotto Jr., “Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases,” The American Journal of Pathology, vol. 182, no. 5, pp. 1474–1481, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. S. H. Chan, C. H. Hung, J. Y. Shih et al., “Baicalein is an available anti-atherosclerotic compound through modulation of nitric oxide-related mechanism under oxLDL exposure,” Oncotarget, vol. 7, no. 28, pp. 42881–42891, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Almeida and J. P. Bolanos, “A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons,” Journal of Neurochemistry, vol. 77, no. 2, pp. 676–690, 2001. View at Google Scholar
  20. P. Dromparis and E. D. Michelakis, “Mitochondria in vascular health and disease,” Annual Review of Physiology, vol. 75, pp. 95–126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Tang, Y. X. Luo, H. Z. Chen, and D. P. Liu, “Mitochondria, endothelial cell function, and vascular diseases,” Frontiers in Physiology, vol. 5, p. 175, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. N. R. Madamanchi and M. S. Runge, “Mitochondrial dysfunction in atherosclerosis,” Circulation Research, vol. 100, no. 4, pp. 460–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. I. A. Sobenin, M. A. Sazonova, A. Y. Postnov, Y. V. Bobryshev, and A. N. Orekhov, “Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease,” Atherosclerosis, vol. 227, no. 2, pp. 283–288, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. Erusalimsky and S. Moncada, “Nitric oxide and mitochondrial signaling: from physiology to pathophysiology,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2524–2531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. P. Patel, D. Moellering, J. Murphy-Ullrich, H. Jo, J. S. Beckman, and V. M. Darley-Usmar, “Cell signaling by reactive nitrogen and oxygen species in atherosclerosis,” Free Radical Biology & Medicine, vol. 28, no. 12, pp. 1780–1794, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Giuffre, V. B. Borisov, M. Arese, P. Sarti, and E. Forte, “Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1837, no. 7, pp. 1178–1187, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. J. B. Vicente, F. Malagrino, M. Arese, E. Forte, P. Sarti, and A. Giuffrè, “Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1857, no. 8, pp. 1127–1138, 2016. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Zhang, Y. Diao, R. Hua et al., “Nitric oxide-mediated pathways and its role in the degenerative diseases,” Frontiers in Bioscience (Landmark Edition), vol. 22, pp. 824–834, 2017. View at Google Scholar
  29. C. Bogdan, “Nitric oxide synthase in innate and adaptive immunity: an update,” Trends in Immunology, vol. 36, no. 3, pp. 161–178, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Galkin, A. Y. Abramov, N. Frakich, M. R. Duchen, and S. Moncada, “Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury?” The Journal of Biological Chemistry, vol. 284, no. 52, pp. 36055–36061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Sarti, E. Forte, A. Giuffre, D. Mastronicola, M. C. Magnifico, and M. Arese, “The chemical interplay between nitric oxide and mitochondrial cytochrome c oxidase: reactions, effectors and pathophysiology,” International Journal of Cell Biology, vol. 2012, Article ID 571067, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Sarti, E. Lendaro, R. Ippoliti, A. Bellelli, P. A. Benedetti, and M. Brunori, “Modulation of mitochondrial respiration by nitric oxide: investigation by single cell fluorescence microscopy,” The FASEB Journal, vol. 13, no. 1, pp. 191–197, 1999. View at Google Scholar
  33. S. Moncada and E. A. Higgs, “The discovery of nitric oxide and its role in vascular biology,” British Journal of Pharmacology, vol. 147, Supplement 1, pp. S193–S201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Chatterjee, S. M. Black, and J. D. Catravas, “Endothelial nitric oxide (NO) and its pathophysiologic regulation,” Vascular Pharmacology, vol. 49, no. 4-6, pp. 134–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Karbach, P. Wenzel, A. Waisman, T. Munzel, and A. Daiber, “eNOS uncoupling in cardiovascular diseases--the role of oxidative stress and inflammation,” Current Pharmaceutical Design, vol. 20, no. 22, pp. 3579–3594, 2014. View at Google Scholar
  37. U. Forstermann and W. C. Sessa, “Nitric oxide synthases: regulation and function,” European Heart Journal, vol. 33, no. 7, pp. 829–837, 2012, 837a-837d. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Li and U. Forstermann, “Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease,” Current Opinion in Pharmacology, vol. 13, no. 2, pp. 161–167, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Sarti, M. Arese, E. Forte, A. Giuffrè, and D. Mastronicola, “Mitochondria and nitric oxide: chemistry and pathophysiology,” Advances in Experimental Medicine and Biology, vol. 942, pp. 75–92, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. P. A. Srere, “Citrate synthase,” Methods in Enzymology, vol. 13, pp. 3–11, 1969. View at Google Scholar
  41. T. G. Redgrave, D. C. Roberts, and C. E. West, “Separation of plasma lipoproteins by density-gradient ultracentrifugation,” Analytical Biochemistry, vol. 65, no. 1-2, pp. 42–49, 1975. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Cwiklinska, B. Kortas-Stempak, A. Gliwinska, A. Pacanis, A. Kuchta, and M. Wróblewska, “Interaction between VLDL and phosphatidylcholine liposomes generates new γ-LpE-like particles,” Lipids, vol. 49, no. 2, pp. 143–153, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Guha, C. England, H. Herscovitz, and O. Gursky, “Thermal transitions in human very-low-density lipoprotein: fusion, rupture, and dissociation of HDL-like particles,” Biochemistry, vol. 46, no. 20, pp. 6043–6049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Guha and O. Gursky, “Effects of oxidation on structural stability and remodeling of human very low density lipoprotein,” Biochemistry, vol. 49, no. 44, pp. 9584–9593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. U. P. Steinbrecher, S. Parthasarathy, D. S. Leake, J. L. Witztum, and D. Steinberg, “Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12, pp. 3883–3887, 1984. View at Google Scholar
  46. K. Yagi, “A simple fluorometric assay for lipoperoxide in blood plasma,” Biochemical Medicine, vol. 15, no. 2, pp. 212–216, 1976. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Robin, M. Arese, E. Forte, P. Sarti, A. Giuffrè, and T. Soulimane, “A sulfite respiration pathway from Thermus thermophilus and the key role of newly identified cytochrome c550,” Journal of Bacteriology, vol. 193, no. 15, pp. 3988–3997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Masci, D. Mastronicola, M. Arese et al., “Control of cell respiration by nitric oxide in Ataxia Telangiectasia lymphoblastoid cells,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1777, no. 1, pp. 66–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Gnaiger, A. V. Kuznetsov, B. Lassnig et al., “High-resolution respirometry—optimum permeabilization of the cell membrane by digitonin,” BioThermoKinetics in the Post Genomic era, p. 7, 1998. View at Google Scholar
  50. A. V. Kuznetsov, V. Veksler, F. N. Gellerich, V. Saks, R. Margreiter, and W. S. Kunz, “Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells,” Nature Protocols, vol. 3, no. 6, pp. 965–976, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Gutierrez, S. W. Ballinger, V. M. Darley-Usmar, and A. Landar, “Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells,” Circulation Research, vol. 99, no. 9, pp. 924–932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. A. Kluge, J. L. Fetterman, and J. A. Vita, “Mitochondria and endothelial function,” Circulation Research, vol. 112, no. 8, pp. 1171–1188, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. G. C. Brown, “Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase,” FEBS Letters, vol. 369, no. 2-3, pp. 136–139, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. U. Forstermann, “Nitric oxide and oxidative stress in vascular disease,” Pflügers Archiv, vol. 459, no. 6, pp. 923–939, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Falabella, E. Forte, M. C. Magnifico et al., “Evidence for detrimental cross interactions between reactive oxygen and nitrogen species in Leber’s hereditary optic neuropathy cells,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 3187560, 9 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Arese, M. C. Magnifico, D. Mastronicola et al., “Nanomolar melatonin enhances nNOS expression and controls HaCaT-cells bioenergetics,” IUBMB Life, vol. 64, no. 3, pp. 251–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. I. Wang, J. Schulze, N. Raymond et al., “Endothelial inflammation correlates with subject triglycerides and waist size after a high-fat meal,” American Journal of Physiology Heart and Circulatory Physiology, vol. 300, no. 3, pp. H784–H791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Itoh, P. Ye, T. Matsumiya, K. Tanji, and T. Ozaki, “Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria,” Journal of Clinical Biochemistry and Nutrition, vol. 56, no. 2, pp. 91–97, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. B. J. Michell, Z. Chen, T. Tiganis et al., “Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase,” The Journal of Biological Chemistry, vol. 276, no. 21, pp. 17625–17628, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. L. A. Biwer, E. P. Taddeo, B. M. Kenwood, K. L. Hoehn, A. C. Straub, and B. E. Isakson, “Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition,” Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol. 1861, no. 7, pp. 671–679, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Chen, S. Kumar, Y. Yu et al., “PKC-dependent phosphorylation of eNOS at T495 regulates eNOS coupling and endothelial barrier function in response to G+−toxins,” PLoS One, vol. 9, no. 7, article e99823, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. Q. Li, J. Y. Youn, and H. Cai, “Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension,” Journal of Hypertension, vol. 33, no. 6, pp. 1128–1136, 2015. View at Publisher · View at Google Scholar · View at Scopus
  64. G. H. Oliveira-Paula, R. Lacchini, and J. E. Tanus-Santos, “Endothelial nitric oxide synthase: from biochemistry and gene structure to clinical implications of NOS3 polymorphisms,” Gene, vol. 575, Part 3, no. 2, pp. 584–599, 2015. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Lambden, P. Kelly, B. Ahmetaj-Shala et al., “Dimethylarginine dimethylaminohydrolase 2 regulates nitric oxide synthesis and hemodynamics and determines outcome in polymicrobial sepsis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 35, no. 6, pp. 1382–1392, 2015. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Chen, H. Xiao, A. N. Rizzo, W. Zhang, Y. Mai, and M. Ye, “Endothelial nitric oxide synthase dimerization is regulated by heat shock protein 90 rather than by phosphorylation,” PLoS One, vol. 9, no. 8, article e105479, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. J. L. Park, S. E. Whitesall, L. G. D'Alecy, L. Shu, and J. A. Shayman, “Vascular dysfunction in the alpha-galactosidase A-knockout mouse is an endothelial cell-, plasma membrane-based defect,” Clinical and Experimental Pharmacology & Physiology, vol. 35, no. 10, pp. 1156–1163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Zschiebsch, C. Fischer, G. Pickert et al., “Tetrahydrobiopterin attenuates DSS-evoked colitis in mice by rebalancing redox and lipid signalling,” Journal of Crohn's & Colitis, vol. 10, no. 8, pp. 965–978, 2016. View at Publisher · View at Google Scholar
  69. M. E. Widlansky and D. D. Gutterman, “Regulation of endothelial function by mitochondrial reactive oxygen species,” Antioxidants & Redox Signaling, vol. 15, no. 6, pp. 1517–1530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. I. A. Zani, S. L. Stephen, N. A. Mughal et al., “Scavenger receptor structure and function in health and disease,” Cell, vol. 4, no. 2, pp. 178–201, 2015. View at Publisher · View at Google Scholar
  71. A. Pirillo, G. D. Norata, and A. L. Catapano, “LOX-1, OxLDL, and atherosclerosis,” Mediators of Inflammation, vol. 2013, Article ID 152786, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus