Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 3179421, 16 pages
https://doi.org/10.1155/2017/3179421
Review Article

DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

1Division of Hepatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
2Division of Rheumatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, Cape Town, South Africa

Correspondence should be addressed to Mankgopo Magdeline Kgatle; moc.liamg@eltagk.opogknam

Received 27 January 2017; Revised 1 May 2017; Accepted 23 May 2017; Published 27 June 2017

Academic Editor: Peeter Karihtala

Copyright © 2017 Mankgopo Magdeline Kgatle et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Ziech, R. Franco, A. Pappa et al., “The role of epigenetics in environmental and occupational carcinogenesis,” Chemico-Biological Interactions, vol. 188, no. 2, pp. 340–349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Zingg and P. A. Jones, “Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis,” Carcinogenesis, vol. 18, no. 5, pp. 869–882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Ziech, R. Franco, A. Pappa, and M. I. Panayiotidis, “Reactive oxygen species (ROS)—induced genetic and epigenetic alterations in human carcinogenesis,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 711, no. 1, pp. 167–173, 2011. View at Google Scholar
  4. J. S. Butel, “Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease,” Carcinogenesis, vol. 21, no. 3, pp. 405–426, 2000. View at Publisher · View at Google Scholar
  5. S. L. Friedman, “Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury,” The Journal of Biological Chemistry, vol. 275, no. 4, pp. 2247–2250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Olaso and S. L. Friedman, “Molecular regulation of hepatic fibrogenesis,” Journal of Hepatology, vol. 29, no. 5, pp. 836–847, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. T. D. Kessis, D. C. Connolly, L. Hedrick, and K. R. Cho, “Expression of HPV16 E6 or E7 increases integration of foreign DNA,” Oncogene, vol. 13, no. 2, pp. 427–431, 1996. View at Google Scholar
  8. H. Wiseman and B. Halliwell, “Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer,” The Biochemical Journal, vol. 313, Part 1, pp. 17–29, 1996. View at Publisher · View at Google Scholar
  9. P. Vivekanandan, H. D. Daniel, R. Kannangai, F. Martinez-Murillo, and M. Torbenson, “Hepatitis B virus replication induces methylation of both host and viral DNA,” Journal of Virology, vol. 84, no. 9, pp. 4321–4329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Torres, J. D. Jones, and J. L. Dangl, “Reactive oxygen species signaling in response to pathogens,” Plant Physiology, vol. 141, no. 2, pp. 373–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Fubini and A. Hubbard, “Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis,” Free Radical Biology and Medicine, vol. 34, no. 12, pp. 1507–1516, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. K. B. Schwarz, “Oxidative stress during viral infection: a review,” Free Radical Biology and Medicine, vol. 21, no. 5, pp. 641–649, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Pontillo, P. Bricher, V. Leal, S. Lima, P. Souza, and S. Crovella, “Role of inflammasome genetics in susceptibility to HPV infection and cervical cancer development,” Journal of Medical Virology, vol. 88, no. 9, pp. 1646–1651, 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Reinholz, Y. Kawakami, S. Salzer et al., “HPV16 activates the AIM2 inflammasome in keratinocytes,” Archives of Dermatological Research, vol. 305, no. 8, pp. 723–732, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Lamkanfi and V. M. Dixit, “Mechanisms and functions of inflammasomes,” Cell, vol. 157, no. 5, pp. 1013–1022, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Latz, T. S. Xiao, and A. Stutz, “Activation and regulation of the inflammasomes,” Nature Reviews Immunology, vol. 13, no. 6, pp. 397–411, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Han, Z. Chen, R. Hou et al., “Expression of AIM2 is correlated with increased inflammation in chronic hepatitis B patients,” Virology Journal, vol. 12, no. 1, p. 129, 2015. View at Google Scholar
  18. W. Du, J. Zhen, Z. Zheng, S. Ma, and S. Chen, “Expression of AIM2 is high and correlated with inflammation in hepatitis B virus associated glomerulonephritis,” Journal of Inflammation, vol. 10, no. 1, p. 37, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhen, L. Zhang, J. Pan et al., “AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1beta, and IL-18,” Mediators of Inflammation, vol. 2014, Article ID 190860, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. S. S. David, V. L. O'shea, and S. Kundu, “Base-excision repair of oxidative DNA damage,” Nature, vol. 447, no. 7147, pp. 941–950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. C. Friedberg, “Relationships between DNA repair and transcription,” Annual Review of Biochemistry, vol. 65, no. 1, pp. 15–42, 1996. View at Publisher · View at Google Scholar
  22. H. M. O'Hagan, H. P. Mohammad, and S. B. Baylin, “Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island,” PLoS Genetics, vol. 4, no. 8, article e1000155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. R. Kafer, X. Li, T. Horii et al., “5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability,” Cell Reports, vol. 14, no. 6, pp. 1283–1292, 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. W. Zhang, Z. Wang, W. Xie et al., “Acetylation enhances TET2 function in protecting against abnormal DNA methylation during oxidative stress,” Molecular Cell, vol. 65, no. 2, pp. 323–335, 2017. View at Publisher · View at Google Scholar
  25. S. E. Polo, A. Kaidi, L. Baskcomb, Y. Galanty, and S. P. Jackson, “Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4,” The EMBO Journal, vol. 29, no. 18, pp. 3130–3139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Luijsterburg, K. Acs, L. Ackermann et al., “A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure,” The EMBO Journal, vol. 31, no. 11, pp. 2511–2527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Stucki, J. A. Clapperton, D. Mohammad, M. B. Yaffe, S. J. Smerdon, and S. P. Jackson, “MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks,” Cell, vol. 123, no. 7, pp. 1213–1226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Kang, R. Zhang, G. Y. Kim, S. C. Bae, and J. W. Hyun, “Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3,” Tumor Biology, vol. 33, no. 2, pp. 403–412, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. C. M. Chiang, M. Ustav, A. Stenlund, T. F. Ho, T. R. Broker, and L. T. Chow, “Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 5799–5803, 1992. View at Google Scholar
  30. A. Fernandez and M. Esteller, “Viral epigenomes in human tumorigenesis,” Oncogene, vol. 29, no. 10, pp. 1405–1420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. D. Fingeroth, J. J. Weis, T. F. Tedder, J. L. Strominger, P. A. Biro, and D. T. Fearon, “Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 14, pp. 4510–4514, 1984. View at Google Scholar
  32. M. Stanley, “Pathology and epidemiology of HPV infection in females,” Gynecologic Oncology, vol. 117, no. 2, pp. S5–S10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. zur Hausen, “Papillomaviruses in the causation of human cancers—a brief historical account,” Virology, vol. 384, no. 2, pp. 260–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Andersson, E. Rylander, B. Larsson, A. Strand, C. Silfversvärd, and E. Wilander, “The role of human papillomavirus in cervical adenocarcinoma carcinogenesis,” European Journal of Cancer, vol. 37, no. 2, pp. 246–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. H. zur Hausen, “Novel human polyomaviruses—re-emergence of a well known virus family as possible human carcinogens,” International Journal of Cancer, vol. 123, no. 2, pp. 247–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Muñoz, F. X. Bosch, S. de Sanjosé et al., “Epidemiologic classification of human papillomavirus types associated with cervical cancer,” The New England Journal of Medicine, vol. 348, no. 6, pp. 518–527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. E. De Villiers, C. Fauquet, T. R. Broker, H. Bernard, and H. zur Hausen, “Classification of papillomaviruses,” Virology, vol. 324, no. 1, pp. 17–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Doorbar, C. Foo, N. Coleman et al., “Characterization of events during the late stages of HPV16 infection in vivo using high-affinity synthetic Fabs to E4,” Virology, vol. 238, no. 1, pp. 40–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. M. G. Frattini and L. A. Laimins, “The role of the E1 and E2 proteins in the replication of human papillomavirus type 31b,” Virology, vol. 204, no. 2, pp. 799–804, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. M. E. Hagensee, N. H. Olson, T. S. Baker, and D. A. Galloway, “Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids,” Journal of Virology, vol. 68, no. 7, pp. 4503–4505, 1994. View at Google Scholar
  41. Y. Zhang, J. Dasgupta, R. Z. Ma, L. Banks, M. Thomas, and X. S. Chen, “Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein,” Journal of Virology, vol. 81, no. 7, pp. 3618–3626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. N. Burchell, R. L. Winer, S. de Sanjosé, and E. L. Franco, “Epidemiology and transmission dynamics of genital HPV infection,” Vaccine, vol. 24, pp. S52–S61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Bodily and L. A. Laimins, “Persistence of human papillomavirus infection: keys to malignant progression,” Trends in Microbiology, vol. 19, no. 1, pp. 33–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. R. C. Kines, C. D. Thompson, D. R. Lowy, J. T. Schiller, and P. M. Day, “The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20458–20463, 2009. View at Google Scholar
  45. C. A. Moody and L. A. Laimins, “Human papillomavirus oncoproteins: pathways to transformation,” Nature Reviews Cancer, vol. 10, no. 8, pp. 550–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Castellsagué, “Natural history and epidemiology of HPV infection and cervical cancer,” Gynecologic Oncology, vol. 110, no. 3, pp. S4–S7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. C. B. Woodman, S. I. Collins, and L. S. Young, “The natural history of cervical HPV infection: unresolved issues,” Nature Reviews Cancer, vol. 7, no. 1, pp. 11–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. van Duin, P. J. Snijders, H. F. Schrijnemakers et al., “Human papillomavirus 16 load in normal and abnormal cervical scrapes: an indicator of CIN II/III and viral clearance,” International Journal of Cancer, vol. 98, no. 4, pp. 590–595, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” The Lancet, vol. 370, no. 9590, pp. 890–907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. I. J. Mohr, R. Clark, S. Sun, E. J. Androphy, P. MacPherson, and M. R. Botchan, “Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator,” Science, vol. 250, no. 4988, p. 1694, 1990. View at Publisher · View at Google Scholar
  51. S. Cole and O. Danos, “Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome: phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products,” Journal of Molecular Biology, vol. 193, no. 4, pp. 599–608, 1987. View at Publisher · View at Google Scholar · View at Scopus
  52. H. R. McMurray and D. J. McCance, “Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7,” Journal of Virology, vol. 78, no. 11, pp. 5698–5706, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Hu, D. Zhu, W. Wang et al., “Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism,” Nature Genetics, vol. 47, no. 2, pp. 158–163, 2015. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Zhang, B. Yang, A. Zhang et al., “Association between human papillomavirus type 16 E6 and E7 variants with subsequent persistent infection and recurrence of cervical high-grade squamous intraepithelial lesion after conization,” Journal of Medical Virology, vol. 88, no. 11, pp. 1982–1988, 2016. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Senapati, N. N. Senapati, and B. Dwibedi, “Molecular mechanisms of HPV mediated neoplastic progression,” Infectious Agents and Cancer, vol. 11, no. 1, p. 59, 2016. View at Google Scholar
  56. P. Peitsaro, S. Hietanen, B. Johansson, T. Lakkala, and S. Syrjanen, “Single copy heterozygote integration of HPV 33 in chromosomal band 5p14 is found in an epithelial cell clone with selective growth advantage,” Carcinogenesis, vol. 23, no. 6, pp. 1057–1064, 2002. View at Publisher · View at Google Scholar
  57. M. R. Pett, M. T. Herdman, R. D. Palmer et al., “Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 10, pp. 3822–3827, 2006. View at Google Scholar
  58. Y. C. Wongworawat, M. Filippova, V. M. Williams, V. Filippov, and P. J. Duerksen-Hughes, “Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes,” American Journal of Cancer Research, vol. 6, no. 4, p. 764, 2016. View at Google Scholar
  59. V. M. Williams, M. Filippova, V. Filippov, K. J. Payne, and P. Duerksen-Hughes, “Human papillomavirus type 16 E6* induces oxidative stress and DNA damage,” Journal of Virology, vol. 88, no. 12, pp. 6751–6761, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Visalli, R. Riso, A. Facciolà et al., “Higher levels of oxidative DNA damage in cervical cells are correlated with the grade of dysplasia and HPV infection,” Journal of Medical Virology, vol. 88, no. 2, pp. 336–344, 2016. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Marullo, E. Werner, H. Zhang, G. Z. Chen, D. M. Shin, and P. W. Doetsch, “HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells,” Carcinogenesis, vol. 36, no. 11, pp. 1397–1406, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Niebler, X. Qian, D. Höfler et al., “Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53,” PLoS Pathogens, vol. 9, no. 8, article e1003536, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Martinon, “Signaling by ROS drives inflammasome activation,” European Journal of Immunology, vol. 40, no. 3, pp. 616–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. F. Kerr, C. M. Winterford, and B. V. Harmon, “Apoptosis. Its significance in cancer and cancer therapy,” Cancer, vol. 73, no. 8, pp. 2013–2026, 1994. View at Publisher · View at Google Scholar
  65. K. Kim, P. A. Garner-Hamrick, C. Fisher, D. Lee, and P. F. Lambert, “Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection,” Journal of Virology, vol. 77, no. 23, pp. 12450–12459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Bhattacharjee and S. Sengupta, “CpG methylation of HPV 16 LCR at E2 binding site proximal to P97 is associated with cervical cancer in presence of intact E2,” Virology, vol. 354, no. 2, pp. 280–285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. G. A. Wilson, M. Lechner, A. Köferle et al., “Integrated virus-host methylome analysis in head and neck squamous cell carcinoma,” Epigenetics, vol. 8, no. 9, pp. 953–961, 2013. View at Google Scholar
  68. A. Chaiwongkot, S. Vinokurova, C. Pientong et al., “Differential methylation of E2 binding sites in episomal and integrated HPV 16 genomes in preinvasive and invasive cervical lesions,” International Journal of Cancer, vol. 132, no. 9, pp. 2087–2094, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. A. F. Fernandez, C. Rosales, P. Lopez-Nieva et al., “The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer,” Genome Research, vol. 19, no. 3, pp. 438–451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Yeung, W. P. Tsang, T. Y. Tsang, N. N. Co, P. Yau, and T. Kwok, “HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53,” Development, vol. 1, p. 3, 2010. View at Google Scholar
  71. S. M. Leonard, W. Wei, S. I. Collins et al., “Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women,” Carcinogenesis, vol. 33, no. 7, pp. 1286–1293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. Z. J. D'Costa, C. Jolly, E. J. Androphy, A. Mercer, C. M. Matthews, and M. H. Hibma, “Transcriptional repression of E-cadherin by human papillomavirus type 16 E6,” PLoS One, vol. 7, no. 11, article e48954, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. J. De-Castro Arce, E. Gockel-Krzikalla, and F. Rosl, “Silencing of multi-copy HPV16 by viral self-methylation and chromatin occlusion: a model for epigenetic virus-host interaction,” Human Molecular Genetics, vol. 21, no. 8, pp. 1693–1705, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Hublarova, R. Hrstka, P. Rotterova et al., “Prediction of human papillomavirus 16 e6 gene expression and cervical intraepithelial neoplasia progression by methylation status,” International Journal of Gynecological Cancer, vol. 19, no. 3, pp. 321–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Kang, H. Kim, S. S. Seo, S. Park, D. Sidransky, and S. M. Dong, “Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma,” Gynecologic Oncology, vol. 105, no. 3, pp. 662–666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Murphy, M. Ring, C. C. Heffron et al., “p16INK4A, CDC6, and MCM5: predictive biomarkers in cervical preinvasive neoplasia and cervical cancer,” Journal of Clinical Pathology, vol. 58, no. 5, pp. 525–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Narayan, H. Arias-Pulido, S. Koul et al., “Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome,” Molecular Cancer, vol. 2, no. 1, p. 24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. M. O. Li, Y. Y. Wan, S. Sanjabi, A. L. Robertson, and R. A. Flavell, “Transforming growth factor-β regulation of immune responses,” Annual Review of Immunology, vol. 24, pp. 99–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Widschwendter, H. M. Müller, M. M. Hubalek et al., “Methylation status and expression of human telomerase reverse transcriptase in ovarian and cervical cancer,” Gynecologic Oncology, vol. 93, no. 2, pp. 407–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Y. Yu, J. H. Tong, P. K. Chan et al., “Hypermethylation of the tumor suppressor gene RASSFIA and frequent concomitant loss of heterozygosity at 3p21 in cervical cancers,” International Journal of Cancer, vol. 105, no. 2, pp. 204–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Liu, T. Liu, X. Bao, M. He, L. Li, and X. Yang, “Increased EZH2 expression is associated with proliferation and progression of cervical cancer and indicates a poor prognosis,” International Journal of Gynecological Pathology, vol. 33, no. 3, pp. 218–224, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Cai, Z. Wang, and D. Liu, “Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression,” Tumor Biology, vol. 37, no. 5, pp. 6359–6369, 2016. View at Publisher · View at Google Scholar · View at Scopus
  83. M. E. McLaughlin-Drubin, C. P. Crum, and K. Munger, “Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 5, pp. 2130–2135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Sharma, P. Mandal, T. Sadhukhan et al., “Bridging links between long noncoding RNA HOTAIR and HPV oncoprotein E7 in cervical cancer pathogenesis,” Scientific Reports, vol. 5, article 11724, 2015. View at Google Scholar
  85. L. Huang, L. Liao, A. Liu et al., “Overexpression of long noncoding RNA HOTAIR predicts a poor prognosis in patients with cervical cancer,” Archives of Gynecology and Obstetrics, vol. 290, no. 4, pp. 717–723, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Liu, L. Fang, J. Chen, F. Liu, and X. Wang, “miRNA-dis: microRNA precursor identification based on distance structure status pairs,” Molecular BioSystems, vol. 11, no. 4, pp. 1194–1204, 2015. View at Publisher · View at Google Scholar · View at Scopus
  87. M. M. Kgatle, M. Setshedi, and H. N. Hairwadzi, “Hepatoepigenetic alterations in viral and nonviral-induced hepatocellular carcinoma,” BioMed Research International, vol. 2016, Article ID 3956485, 13 pages, 2016. View at Publisher · View at Google Scholar
  88. M. Pinzani, F. Marra, and V. Carloni, “Signal transduction in hepatic stellate cells,” Liver International, vol. 18, no. 1, pp. 2–13, 1998. View at Google Scholar
  89. R. Safadi and S. L. Friedman, “Hepatic fibrosis--role of hepatic stellate cell activation,” MedGenMed, vol. 4, no. 3, p. 27, 2002. View at Google Scholar
  90. M. Pinzani, S. Milani, C. Grappone, F. L. Weber, P. Gentilini, and H. E. Abboud, “Expression of platelet-derived growth factor in a model of acute liver injury,” Hepatology, vol. 19, no. 3, pp. 701–707, 1994. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Pinzani and F. Marra, “Cytokine receptors and signaling in hepatic stellate cells,” in Seminars in Liver Disease, vol. 21, pp. 397–416, Thieme Medical Publishers, Inc., New York, NY, USA, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. M. X. Luo, S. H. Wong, M. T. Chan et al., “Autophagy mediates HBx-induced nuclear factor-κB activation and release of IL-6, IL-8, and CXCL2 in hepatocytes,” Journal of Cellular Physiology, vol. 230, no. 10, pp. 2382–2389, 2015. View at Publisher · View at Google Scholar · View at Scopus
  93. Q. Yan, M. Li, Q. Liu et al., “Molecular characterization of woodchuck IFI16 and AIM2 and their expression in woodchucks infected with woodchuck hepatitis virus (WHV),” Scientific Reports, vol. 6, article 28776, 2016. View at Google Scholar
  94. X. Shi, J. Yang, N. Mao et al., “Nutlin-3-induced redistribution of chromatin-bound IFI16 in human hepatocellular carcinoma cells in vitro is associated with p53 activation,” Acta Pharmacologica Sinica, vol. 36, no. 2, pp. 252–258, 2015. View at Google Scholar
  95. A. Askari, R. Nosratabadi, M. Khaleghinia et al., “Evaluation of NLRC4, NLRP1, and NLRP3, as components of inflammasomes, in chronic hepatitis B virus-infected patients,” Viral Immunology, vol. 29, no. 9, pp. 496–501, 2016. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Hassanshahi, S. M. A. Sajadi, V. Mirzaei et al., “Expressions of ASC and caspase-1 but not AIM2 are disrupted in chronic HBV infected patients,” Asian Pacific Journal of Tropical Disease, vol. 4, no. 4, pp. 301–305, 2014. View at Publisher · View at Google Scholar · View at Scopus
  97. X. Yu, P. Lan, X. Hou et al., “HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing NF-κB pathway and ROS production,” Journal of Hepatology, vol. 66, no. 4, pp. 693–702, 2016. View at Google Scholar
  98. J. Ferlay, H. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Vivekanandan, D. Thomas, and M. Torbenson, “Hepatitis B viral DNA is methylated in liver tissues,” Journal of Viral Hepatitis, vol. 15, no. 2, pp. 103–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Singh and V. Kumar, “Transgenic mouse models of hepatitis B virus-associated hepatocellular carcinoma,” Reviews in Medical Virology, vol. 13, no. 4, pp. 243–253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. V. Schluter, M. Meyer, P. H. Hofschneider, R. Koshy, and W. H. Caselmann, “Integrated hepatitis B virus X and 3′ truncated preS/S sequences derived from human hepatomas encode functionally active transactivators,” Oncogene, vol. 9, no. 11, pp. 3335–3344, 1994. View at Google Scholar
  102. D. Cougot, Y. Wu, S. Cairo et al., “The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription,” The Journal of Biological Chemistry, vol. 282, no. 7, pp. 4277–4287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Martin-Lluesma, C. Schaeffer, E. I. Robert et al., “Hepatitis B virus X protein affects S phase progression leading to chromosome segregation defects by binding to damaged DNA binding protein 1,” Hepatology, vol. 48, no. 5, pp. 1467–1476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. L. M. Gallego-Paez, H. Tanaka, M. Bando et al., “Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells,” Molecular Biology of the Cell, vol. 25, no. 2, pp. 302–317, 2014. View at Google Scholar
  105. N. Wu and H. Yu, “The Smc complexes in DNA damage response,” Cell & Bioscience, vol. 2, no. 1, p. 5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Urbani, C. Boni, B. Amadei et al., “Acute phase HBV-specific T cell responses associated with HBV persistence after HBV/HCV coinfection,” Hepatology, vol. 41, no. 4, pp. 826–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Shimoda, M. Nagashima, M. Sakamoto et al., “Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis,” Cancer Research, vol. 54, no. 12, pp. 3171-3172, 1994. View at Google Scholar
  108. F. Kawai-Kitahata, Y. Asahina, S. Tanaka et al., “Comprehensive analyses of mutations and hepatitis B virus integration in hepatocellular carcinoma with clinicopathological features,” Journal of Gastroenterology, vol. 51, no. 5, pp. 473–486, 2016. View at Publisher · View at Google Scholar · View at Scopus
  109. J. R. Jacob, A. Sterczer, I. A. Toshkov et al., “Integration of woodchuck hepatitis and N-myc rearrangement determine size and histologic grade of hepatic tumors,” Hepatology, vol. 39, no. 4, pp. 1008–1016, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. H. Yan, Y. Yang, L. Zhang et al., “Characterization of the genotype and integration patterns of hepatitis B virus in early-and late-onset hepatocellular carcinoma,” Hepatology, vol. 61, no. 6, pp. 1821–1831, 2015. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Dejean, L. Bougueleret, K. Grzeschik, and P. Tiollais, “Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma,” Nature, vol. 322, no. 6074, pp. 70–72, 1986. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Wang, S. H. Lau, J. S. Sham, M. Wu, T. Wang, and X. Guan, “Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated X gene and hepatocellular carcinogenesis,” Oncogene, vol. 23, no. 1, pp. 142–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. Watanabe, H. Yamamoto, R. Oikawa et al., “DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences,” Genome Research, vol. 25, no. 3, pp. 328–337, 2015. View at Publisher · View at Google Scholar · View at Scopus
  114. J. de Wilde, J. M. Kooter, R. M. Overmeer et al., “hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis,” BMC Cancer, vol. 10, no. 1, p. 271, 2010. View at Google Scholar
  115. D. Iliopoulos, M. Satra, A. Drakaki, G. A. Poultsides, and A. Tsezou, “Epigenetic regulation of hTERT promoter in hepatocellular carcinomas,” International Journal of Oncology, vol. 34, no. 2, p. 391, 2009. View at Google Scholar
  116. Y. Kanai, S. Ushijima, A. Hui et al., “The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas,” International Journal of Cancer, vol. 71, no. 3, pp. 355–359, 1997. View at Publisher · View at Google Scholar
  117. J. Liu, Z. Lian, S. Han et al., “Downregulation of E-cadherin by hepatitis B virus X antigen in hepatocellullar carcinoma,” Oncogene, vol. 25, no. 7, pp. 1008–1017, 2006. View at Google Scholar
  118. Y. Zhu, R. Zhu, J. Fan et al., “Hepatitis B virus X protein induces hypermethylation of p16INK4A promoter via DNA methyltransferases in the early stage of HBV-associated hepatocarcinogenesis,” Journal of Viral Hepatitis, vol. 17, no. 2, pp. 98–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Zhang, B. Gao, Z. Yu et al., “Promoter hypermethylation of p14ARF, RB, and INK4 gene family in hepatocellular carcinoma with hepatitis B virus infection,” Tumor Biology, vol. 35, no. 3, pp. 2795–2802, 2014. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Zhang, J. Ma, K. Nie et al., “Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma,” Blood Cancer Journal, vol. 4, no. 11, article e261, 2014. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Taipale and J. Keski-Oja, “Growth factors in the extracellular matrix,” The FASEB Journal, vol. 11, no. 1, pp. 51–59, 1997. View at Google Scholar
  122. K. Yuan, Y. Lei, H. Chen et al., “HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3,” Cell Death and Differentiation, vol. 23, no. 4, pp. 616–627, 2016. View at Publisher · View at Google Scholar · View at Scopus
  123. N. X. Hoan, H. Van Tong, D. P. Giang et al., “SOCS3 genetic variants and promoter hypermethylation in patients with chronic hepatitis B,” Oncotarget, vol. 8, no. 10, pp. 17127–17139, 2017. View at Publisher · View at Google Scholar
  124. K. Lim, E. Park, D. H. Kim et al., “Suppression of interferon-mediated anti-HBV response by single CpG methylation in the 5′-UTR of TRIM22,” Gut, 2017. View at Publisher · View at Google Scholar
  125. W. Ayadi, H. Karray-Hakim, A. Khabir et al., “Aberrant methylation of p16, DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients,” Anticancer Research, vol. 28, no. 4B, pp. 2161–2167, 2008. View at Google Scholar
  126. A. T. Deyrup, “Epstein-Barr virus–associated epithelial and mesenchymal neoplasms,” Human Pathology, vol. 39, no. 4, pp. 473–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. M. P. Thompson and R. Kurzrock, “Epstein-Barr virus and cancer,” Clinical Cancer Research, vol. 10, no. 3, pp. 803–821, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. Q. Li, M. K. Spriggs, S. Kovats et al., “Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes,” Journal of Virology, vol. 71, no. 6, pp. 4657–4662, 1997. View at Google Scholar
  129. S. J. Molesworth, C. M. Lake, C. M. Borza, S. M. Turk, and L. M. Hutt-Fletcher, “Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells,” Journal of Virology, vol. 74, no. 14, pp. 6324–6332, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Adams, “Replication of latent Epstein-Barr virus genomes in Raji cells,” Journal of Virology, vol. 61, no. 5, pp. 1743–1746, 1987. View at Google Scholar
  131. J. I. Cohen, “Epstein–Barr virus infection,” The New England Journal of Medicine, vol. 343, no. 7, pp. 481–492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  132. L. Frappier, “Contributions of Epstein–Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival,” Virus, vol. 4, no. 9, pp. 1537–1547, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. W. H. Feng, E. Westphal, A. Mauser et al., “Use of adenovirus vectors expressing Epstein-Barr virus (EBV) immediate-early protein BZLF1 or BRLF1 to treat EBV-positive tumors,” Journal of Virology, vol. 76, no. 21, pp. 10951–10959, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Gastaldello, X. Chen, S. Callegari, and M. G. Masucci, “Caspase-1 promotes Epstein-Barr virus replication by targeting the large tegument protein deneddylase to the nucleus of productively infected cells,” PLoS Pathogens, vol. 9, no. 10, article e1003664, 2013. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Peng, Y. Chen, P. Gong et al., “Higher methylation intensity induced by EBV LMP1 via NF-kappaB/DNMT3b signaling contributes to silencing of PTEN gene,” Oncotarget, vol. 7, no. 26, pp. 40025–40037, 2016. View at Publisher · View at Google Scholar
  136. L. Zhou, W. Jiang, C. Ren et al., “Frequent hypermethylation of RASSF1A, TSLC1, high viral load of Epstein-Barr virus DNA in nasopharyngeal carcinoma, matched tumor-adjacent tissues,” Neoplasia, vol. 7, no. 9, pp. 809–815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. T. Seng, J. Low, H. Li et al., “The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation,” Oncogene, vol. 26, no. 6, pp. 934–944, 2007. View at Google Scholar
  138. X. Chen, S. A. Kamranvar, and M. Masucci, “Oxidative stress enables Epstein–Barr virus-induced B-cell transformation by posttranscriptional regulation of viral and cellular growth-promoting factors,” Oncogene, vol. 35, no. 29, pp. 3807–3816, 2016. View at Google Scholar
  139. G. B. Park, S. H. Park, D. Kim, Y. S. Kim, S. H. Yoon, and D. Y. Hur, “Berberine induces mitochondrial apoptosis of EBV-transformed B cells through p53-mediated regulation of XAF1 and GADD45α,” International Journal of Oncology, vol. 49, no. 1, pp. 411–421, 2016. View at Publisher · View at Google Scholar · View at Scopus
  140. M. A. Ansari, V. V. Singh, S. Dutta et al., “Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells,” Journal of Virology, vol. 87, no. 15, pp. 8606–8623, 2013. View at Publisher · View at Google Scholar · View at Scopus
  141. J. H. Vos, E. L. Wauthier, and P. C. Hanawalt, “DNA damage stimulates human cell transformation by integrative but not episomal Epstein-Barr virus-derived plasmid,” Molecular Carcinogenesis, vol. 2, no. 5, pp. 237–244, 1989. View at Publisher · View at Google Scholar · View at Scopus
  142. P. A. Nikitin, C. M. Yan, E. Forte et al., “An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells,” Cell Host & Microbe, vol. 8, no. 6, pp. 510–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Kudoh, M. Fujita, L. Zhang et al., “Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 8156–8163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Kamranvar and M. Masucci, “The Epstein–Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress,” Leukemia, vol. 25, no. 6, pp. 1017–1025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Jakovljevic, M. Andric, M. Miletic et al., “Epstein-Barr virus infection induces bone resorption in apical periodontitis via increased production of reactive oxygen species,” Medical Hypotheses, vol. 94, pp. 40–42, 2016. View at Publisher · View at Google Scholar · View at Scopus
  146. L. Zhao, F. Xie, T. T. Wang et al., “Chlorpyrifos induces the expression of the Epstein-Barr virus lytic cycle activator BZLF-1 via reactive oxygen species,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 309125, 8 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Huang, C. Fang, C. Wu, C. Tsai, S. Lin, and J. Chen, “Reactive oxygen species mediate Epstein-Barr virus reactivation by N-methyl-N’-nitro-N-nitrosoguanidine,” PLoS One, vol. 8, no. 12, article e84919, 2013. View at Publisher · View at Google Scholar · View at Scopus
  148. X. Long, Y. Li, M. Yang, L. Huang, W. Gong, and E. Kuang, “BZLF1 attenuates transmission of inflammatory paracrine senescence in Epstein-Barr virus-infected cells by downregulating tumor necrosis factor alpha,” Journal of Virology, vol. 90, no. 17, pp. 7880–7893, 2016. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Lassoued, B. Gargouri, A. E. El Feki, H. Attia, and J. Van Pelt, “Transcription of the Epstein–Barr virus lytic cycle activator BZLF-1 during oxidative stress induction,” Biological Trace Element Research, vol. 137, no. 1, pp. 13–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. T. Ohtsuka, H. Ryu, Y. A. Minamishima et al., “ASC is a Bax adaptor and regulates the p53–Bax mitochondrial apoptosis pathway,” Nature Cell Biology, vol. 6, no. 2, pp. 121–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. N. Kerur, M. V. Veettil, N. Sharma-Walia et al., “IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection,” Cell Host & Microbe, vol. 9, no. 5, pp. 363–375, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. D. Dutta, S. Dutta, M. V. Veettil et al., “BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-β responses,” PLoS Pathogens, vol. 11, no. 6, article e1005030, 2015. View at Publisher · View at Google Scholar · View at Scopus
  153. D. E. Tsai, M. Nearey, C. L. Hardy et al., “Use of EBV PCR for the diagnosis and monitoring of post-transplant lymphoproliferative disorder in adult solid organ transplant patients,” American Journal of Transplantation, vol. 2, no. 10, pp. 946–954, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. C. K. Wille, D. M. Nawandar, A. N. Henning et al., “5-hydroxymethylation of the EBV genome regulates the latent to lytic switch,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 52, pp. E7257–E7265, 2015. View at Publisher · View at Google Scholar · View at Scopus
  155. H. Geddert, A. Zur Hausen, H. E. Gabbert, and M. Sarbia, “EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1,” Analytical Cellular Pathology (Amsterdam), vol. 33, no. 3, pp. 143–149, 2010. View at Google Scholar
  156. J. Zhao, Q. Liang, K. Cheung et al., “Genome-wide identification of Epstein-Barr virus–driven promoter methylation profiles of human genes in gastric cancer cells,” Cancer, vol. 119, no. 2, pp. 304–312, 2013. View at Publisher · View at Google Scholar · View at Scopus
  157. T. Murata, Y. Kondo, A. Sugimoto et al., “Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells,” Journal of Virology, vol. 86, no. 9, pp. 4752–4761, 2012. View at Publisher · View at Google Scholar · View at Scopus
  158. R. Hamamoto, Y. Furukawa, M. Morita et al., “SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells,” Nature Cell Biology, vol. 6, no. 8, pp. 731–740, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. S. K. Shukla, J. Khatoon, K. N. Prasad et al., “Transforming growth factor beta 1 (TGF-β1) modulates Epstein-Barr virus reactivation in absence of Helicobacter pylori infection in patients with gastric cancer,” Cytokine, vol. 77, pp. 176–179, 2016. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Cheng, H. Deng, B. Xiao et al., “piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells,” Cancer Letters, vol. 315, no. 1, pp. 12–17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. J. Qiu and D. A. Thorley-Lawson, “EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 30, pp. 11157–11162, 2014. View at Google Scholar
  162. D. Kang, R. L. Skalsky, and B. R. Cullen, “EBV BART microRNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival,” PLoS Pathogens, vol. 11, no. 6, article e1004979, 2015. View at Publisher · View at Google Scholar · View at Scopus
  163. M. Haneklaus, M. Gerlic, M. Kurowska-Stolarska et al., “Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production,” Journal of Immunology, vol. 189, no. 8, pp. 3795–3799, 2012. View at Publisher · View at Google Scholar · View at Scopus