Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017 (2017), Article ID 7156941, 8 pages
https://doi.org/10.1155/2017/7156941
Review Article

Research Progress on Signaling Pathway-Associated Oxidative Stress in Endothelial Cells

1National Engineering Laboratory for Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
2College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China

Correspondence should be addressed to Qinlu Lin; moc.621@3040lqnil

Received 4 November 2016; Revised 1 February 2017; Accepted 16 February 2017; Published 19 April 2017

Academic Editor: Serafina Perrone

Copyright © 2017 Ying Liang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. G. Zhou, L. Liu, Y. Zhang et al., “Glutathione prevents free fatty acids-induced oxidative stress and apoptosis in human brain vascular endothelial cells through Akt pathway,” CNS Neuroscience & Therapeutics, vol. 19, no. 4, pp. 252–261, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Posadino, A. Cossu, R. Giordo et al., “Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death,” Food and Chemical Toxicology, vol. 78, pp. 10–16, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Xu, S. Wang, B. Li, A. Sun, Y. Zou, and J. Ge, “A protective role of ciglitazone in ox-LDL-induced rat microvascular endothelial cells via modulating PPARγ-dependent AMPK/eNOS pathway,” Journal of Cellular and Molecular Medicine, vol. 19, no. 1, pp. 92–102, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Spescha, M. Glanzmann, B. Simic et al., “Adaptor protein p66Shc mediates hypertension-associated, cyclic stretch–dependent, endothelial damage,” Hypertension, vol. 64, no. 2, pp. 347–353, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Kim, M. H. Cho, K. C. Choi, K. Lee, K. S. Kim, and S. M. Shim, “Oxidative stress induced by cigarette smoke extracts in human brain cells (T98G) and human brain microvascular endothelial cells (HBMEC) in mono- and co-culture,” Journal of Toxicology and Environmental Health. Part A, vol. 78, no. 15, pp. 1019–1027, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Yu, X. Zhu, X. Qi, J. Che, and B. Cao, “Paeoniflorin protects human EA.hy926 endothelial cells against gamma-radiation induced oxidative injury by activating the NF-E2-related factor 2/heme oxygenase-1 pathway,” Toxicology Letters, vol. 218, no. 3, pp. 224–234, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Hort, M. R. Straliotto, J. de Oliveira et al., “Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: involvement of mitochondrial function,” Biochimie, vol. 105, pp. 172–181, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Rodriguez-Yanez, D. Bahena-Uribe, B. Chavez-Munguia et al., “Commercial single-walled carbon nanotubes effects in fibrinolysis of human umbilical vein endothelial cells,” Toxicology In Vitro, vol. 29, no. 5, pp. 1201–1214, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Lin, J. Liu, M. Ren et al., “Idebenone protects against oxidized low density lipoprotein induced mitochondrial dysfunction in vascular endothelial cells via GSK3β/β-catenin signalling pathways,” Biochemical and Biophysical Research Communications, vol. 465, no. 3, pp. 548–555, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Zhang, Y. Chen, Q. Shen et al., “Myricitrin attenuates high glucose-induced apoptosis through activating Akt-Nrf2 signaling in H9c2 cardiomyocytes,” Molecules, vol. 21, no. 7, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. Chen, M. S. Lee, C. P. Wang, C. C. Hsu, and H. H. Lin, “Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) againstoxidized LDL-induced injury of human endothelial cells,” European Journal of Nutrition, pp. 1–19, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Goy, P. Czypiorski, J. Altschmied et al., “The imbalanced redox status in senescent endothelial cells is due to dysregulated Thioredoxin-1 and NADPH oxidase 4,” Experimental Gerontology, vol. 56, pp. 45–52, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Tang, A. Jacobi, C. Vater, X. Zou, and M. Stiehler, “Salvianolic acid B protects human endothelial progenitor cells against oxidative stress-mediated dysfunction by modulating Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways,” Biochemical Pharmacology, vol. 90, no. 1, pp. 34–49, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Li, D. Ma, M. Chen et al., “Ulinastatin attenuates LPS-induced human endothelial cells oxidative damage through suppressing JNK/c-Jun signaling pathway,” Biochemical and Biophysical Research Communications., vol. 474, no. 3, pp. 572–578, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Guillonneau, F. Paris, S. Dutoit et al., “Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, vol. 30, no. 8, pp. 2899–2914, 2016. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Chen, Y. Lu, Y. Chen, and J. Cheng, “The role of Nrf2 in oxidative stress-induced endothelial injuries,” The Journal of Endocrinology, vol. 225, no. 3, pp. R83–R99, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ishikado, Y. Sono, M. Matsumoto et al., “Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans,” Free Radical Biology & Medicine, vol. 65, pp. 1506–1515, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Liu, Y. Chen, I. E. Kochevar, and U. V. Jurkunas, “Decreased DJ-1 leads to impaired Nrf2-regulated antioxidant defense and increased UV-A-induced apoptosis in corneal endothelial cells,” Investigative Ophthalmology & Visual Science, vol. 55, no. 9, pp. 5551–5560, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Hiramatsu, T. Tsuneyoshi, T. Ogawa, and N. Morihara, “Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells,” Nutrition Research (New York, N.Y.), vol. 36, no. 2, pp. 143–149, 2016. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. S. Keum and B. Y. Choi, “Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway,” Molecules (Basel, Switzerland), vol. 19, no. 7, pp. 10074–10089, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. Anuranjani and M. Bala, “Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage,” Redox Biology, vol. 2, pp. 832–846, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Wang, L. Chen, T. Wang et al., “Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt,” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, vol. 22, no. 10, pp. 875–884, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Liu, W. J. Liao, Z. Zhu et al., “Effect of procyanidine on VEGFR-2 expression and transduction pathway in rat endothelial progenitor cells under high glucose conditions,” Genetics and Molecular Research (GMR), vol. 15, no. 1, 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Paul, H. Ju, S. Rangasamy, Y. Shim, and J. M. Song, “Nanosized silver (II) pyridoxine complex to cause greater inflammatory response and less cytotoxicity to RAW264.7 macrophage cells,” Nanoscale Research Letters, vol. 10, no. 1, p. 140, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Tavakol, E. Hoveizi, S. Kharrazi, B. Tavakol, S. Karimi, and S. M. Rezayat Sorkhabadi, “Organelles and chromatin fragmentation of human umbilical vein endothelial cell influence by the effects of zeta potential and size of silver nanoparticles in different manners,” Artificial Cells, Nanomedicine, and Biotechnology, vol. 10, pp. 1–7, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Shi, X. Sun, Y. Lin et al., “Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways,” Biomaterials, vol. 35, no. 24, pp. 6657–6666, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Beck, C. Rombouts, M. Moreels et al., “Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation,” International Journal of Molecular Medicine, vol. 34, no. 4, pp. 1124–1132, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Olteanu, I. Baldea, S. Clichici et al., “In vitro studies on the mechanisms involved in chemoprevention using Calluna vulgaris on vascular endothelial cells exposed to UVB,” Journal of Photochemistry and Photobiology B, Biology, vol. 136, pp. 54–61, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Shan, S. Zhang, X. Wei et al., “Protection of endothelial cells against Ang II-induced impairment: involvement of both PPARα and PPARγ via PI3K/Akt pathway,” Clinical and Experimental Hypertension (New York, N.Y.: 1993), vol. 38, no. 7, pp. 571–577, 2016. View at Publisher · View at Google Scholar
  30. P. Li, X. Guo, P. Lei, S. Shi, S. Luo, and X. Cheng, “PI3K/Akt/uncoupling protein 2 signaling pathway may be involved in cell senescence and apoptosis induced by angiotensin II in human vascular endothelial cells,” Molecular Biology Reports, vol. 41, no. 10, pp. 6931–6937, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Ni, T. Li, B. Liu et al., “The protective effect of Bcl-xl overexpression against oxidative stress-induced vascular endothelial cell injury and the role of the Akt/eNOS pathway,” International Journal of Molecular Sciences, vol. 14, no. 11, pp. 22149–22162, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Cortes-Vieyra, O. Silva-Garcia, J. Oviedo-Boyso et al., “The glycogen synthase kinase 3α and β isoforms differentially regulates interleukin-12p40 expression in endothelial cells stimulated with peptidoglycan from Staphylococcus aureus,” PLoS One, vol. 10, no. 7, article e0132867, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Zhu, J. Li, K. Wang, X. Hao, R. Ge, and Q. Li, “Isoquercitrin inhibits hydrogen peroxide-induced apoptosis of EA.hy926 cells via the PI3K/Akt/GSK3β signaling pathway,” Molecules (Basel, Switzerland), vol. 21, no. 3, p. 356, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Hohmann, N. Xia, K. Steinkamp-Fenske, U. Forstermann, and H. Li, “Estrogen receptor signaling and the PI3K/Akt pathway are involved in betulinic acid-induced eNOS activation,” Molecules (Basel, Switzerland), vol. 21, no. 8, p. 973, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Wei, X. Zhu, N. Hu et al., “Baicalin attenuates angiotensin II-induced endothelial dysfunction,” Biochemical and Biophysical Research Communications, vol. 465, no. 1, pp. 101–107, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Q. Sui, Z. M. Xu, M. B. Xie, and D. A. Pei, “Resveratrol inhibits hydrogen peroxide-induced apoptosis in endothelial cells via the activation of PI3K/Akt by miR-126,” Journal of Atherosclerosis and Thrombosis, vol. 21, no. 2, pp. 108–118, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Martin, Y. Li, J. Yang et al., “Unspliced X-box-binding protein 1 (XBP1) protects endothelial cells from oxidative stress through interaction with histone deacetylase 3,” The Journal of Biological Chemistry, vol. 289, no. 44, pp. 30625–30634, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Zhuang, T. H. Cheng, N. L. Shih et al., “Tanshinone IIA induces heme oxygenase 1 expression and inhibits cyclic strain-induced interleukin 8 expression in vascular endothelial cells,” The American Journal of Chinese Medicine, vol. 44, no. 2, pp. 377–388, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Li, J. Li, Z. Li et al., “Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the l-NAME-induced hypertensive rat model,” Food & Function, vol. 7, no. 5, pp. 2398–2408, 2016. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Fu, B. Li, Y. Sun, G. Ma, and Y. Yao, “Bradykinin inhibits oxidative stress-induced senescence of endothelial progenitor cells through the B2R/AKT/RB and B2R/EGFR/RB signal pathways,” Oncotarget, vol. 6, no. 28, pp. 24675–24689, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Azimzadeh, W. Sievert, H. Sarioglu et al., “Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction,” Journal of Proteome Research, vol. 14, no. 2, pp. 1203–1219, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Wang, H. Yin, Y. Huang et al., “Panax quinquefolius saponin of stem and leaf attenuates intermittent high glucose-induced oxidative stress injury in cultured human umbilical vein endothelial cells via PI3K/Akt/GSK-3 β pathway,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 196283, p. 7, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. S. A. Head, W. Shi, L. Zhao et al., “Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 52, pp. E7276–E7285, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. E. S. Koh, J. H. Lim, M. Y. Kim et al., “Anthocyanin-rich Seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice,” Journal of Translational Medicine, vol. 13, no. 1, p. 203, 2015. View at Publisher · View at Google Scholar · View at Scopus
  45. K. L. Tsai, T. H. Chiu, M. H. Tsai, H. Y. Chen, and H. C. Ou, “Vinorelbine-induced oxidative injury in human endothelial cells mediated by AMPK/PKC/NADPH/NF-κB pathways,” Cell Biochemistry and Biophysics, vol. 62, no. 3, pp. 467–479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. C. H. Hung, S. H. Chan, P. M. Chu, and K. L. Tsai, “Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation,” Molecular Nutrition & Food Research, vol. 59, no. 10, pp. 1905–1917, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Zhou, M. Chen, X. Zeng et al., “Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells,” Cell Death & Disease, vol. 5, no. 12, article e1576, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Yu, L. Zhang, X. Yang et al., “Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1α-Sirt3 axis,” Molecules (Basel, Switzerland), vol. 17, no. 9, pp. 11216–11228, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Liang, T. Zhang, L. Shi et al., “Ampelopsin protects endothelial cells from hyperglycemia-induced oxidative damage by inducing autophagy via the AMPK signaling pathway,” BioFactors (Oxford, England), vol. 41, no. 6, pp. 463–475, 2015. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Guo, Y. Chen, L. Liao, and W. Wu, “Resveratrol protects HUVECs from oxidized-LDL induced oxidative damage by autophagy upregulation via the AMPK/SIRT1 pathway,” Cardiovascular Drugs and Therapy, vol. 27, no. 3, pp. 189–198, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Y. Zhou, Y. Su, P. Gao, Q. H. Yang, Z. Wang, and Q. Xu, “Resveratrol ameliorates high glucose-induced oxidative stress injury in human umbilical vein endothelial cells by activating AMPK,” Life Sciences, vol. 136, pp. 94–99, 2015. View at Publisher · View at Google Scholar · View at Scopus