Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017 (2017), Article ID 9736836, 9 pages
https://doi.org/10.1155/2017/9736836
Research Article

Spontaneous Production of Glutathione-Conjugated Forms of 1,2-Dichloropropane: Comparative Study on Metabolic Activation Processes of Dihaloalkanes Associated with Occupational Cholangiocarcinoma

Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Correspondence should be addressed to Tappei Takada

Received 11 January 2017; Revised 17 March 2017; Accepted 20 March 2017; Published 7 May 2017

Academic Editor: Guo-Fang Zhang

Copyright © 2017 Yu Toyoda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Sies, “Glutathione and its role in cellular functions,” Free Radical Biology & Medicine, vol. 27, no. 9-10, pp. 916–921, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, “Oxidative stress and antioxidant defense,” World Allergy Organization Journal, vol. 5, no. 1, pp. 9–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Attia, “Deleterious effects of reactive metabolites,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 4, pp. 238–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Toyoda, M. Tamai, K. Kashikura et al., “Acetaminophen-induced hepatotoxicity in a liver tissue model consisting of primary hepatocytes assembling around an endothelial cell network,” Drug Metabolism and Disposition, vol. 40, no. 1, pp. 169–177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. T. J. Monks, M. W. Anders, W. Dekant, J. L. Stevens, S. S. Lau, and P. J. van Bladeren, “Glutathione conjugate mediated toxicities,” Toxicology and Applied Pharmacology, vol. 106, no. 1, pp. 1–19, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. F. P. Guengerich, “Activation of dihaloalkanes by thiol-dependent mechanisms,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 1, pp. 20–27, 2003. View at Google Scholar
  7. S. Kubo, M. Kinoshita, S. Takemura et al., “Characteristics of printing company workers newly diagnosed with occupational cholangiocarcinoma,” Journal of Hepato-Biliary-Pancreatic Sciences, vol. 21, no. 11, pp. 809–817, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Benbrahim-Tallaa, B. Lauby-Secretan, D. Loomis et al., “Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, and 1,3-propane sultone,” The Lancet Oncology, vol. 15, no. 9, pp. 924–925, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kumagai, N. Kurumatani, A. Arimoto, and G. Ichihara, “Cholangiocarcinoma among offset colour proof-printing workers exposed to 1,2-dichloropropane and/or dichloromethane,” Occupational and Environmental Medicine, vol. 70, no. 7, pp. 508–510, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Yamada, S. Kumagai, and G. Endo, “Chemical exposure levels in printing workers with cholangiocarcinoma (second report),” Journal of Occupational Health, vol. 57, no. 3, pp. 245–252, 2015. View at Publisher · View at Google Scholar
  11. T. Sobue, M. Utada, T. Makiuchi et al., “Risk of bile duct cancer among printing workers exposed to 1,2-dichloropropane and/or dichloromethane,” Journal of Occupational Health, vol. 57, no. 3, pp. 230–236, 2015. View at Publisher · View at Google Scholar
  12. Y. Toyoda, T. Takada, and H. Suzuki, “Halogenated hydrocarbon solvent-related cholangiocarcinoma risk: biliary excretion of glutathione conjugates of 1,2-dichloropropane evidenced by untargeted metabolomics analysis,” Scientific Reports, vol. 6, p. 24586, 2016. View at Publisher · View at Google Scholar
  13. Y. Toyoda, Y. Hagiya, T. Adachi, K. Hoshijima, M. T. Kuo, and T. Ishikawa, “MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions,” Xenobiotica, vol. 38, no. 7-8, pp. 833–862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Ishikawa, “The ATP-dependent glutathione S-conjugate export pump,” Trends in Biochemical Sciences, vol. 17, no. 11, pp. 463–468, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Gargas, H. J. Clewell 3rd, and M. E. Andersen, “Metabolism of inhaled dihalomethanes in vivo: differentiation of kinetic constants for two independent pathways,” Toxicology and Applied Pharmacology, vol. 82, no. 2, pp. 211–223, 1986. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Yanagiba, T. Suzuki, M. Suda et al., “Cytochrome P450 2E1 is responsible for the initiation of 1,2-dichloropropane-induced liver damage,” Toxicology and Industrial Health, vol. 32, no. 9, pp. 1589–1597, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. F. P. Guengerich, T. Shimada, K. D. Raney et al., “Elucidation of catalytic specificities of human cytochrome P450 and glutathione S-transferase enzymes and relevance to molecular epidemiology,” Environmental Health Perspectives, vol. 98, pp. 75–80, 1992. View at Publisher · View at Google Scholar
  18. R. Imberti, A. Mapelli, P. Colombo, P. Richelmi, F. Berte, and G. Bellomo, “1,2-Dichloropropane (DCP) toxicity is correlated with DCP-induced glutathione (GSH) depletion and is modulated by factors affecting intracellular GSH,” Archives of Toxicology, vol. 64, no. 6, pp. 459–465, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Sato, S. Kubo, S. Takemura et al., “Different carcinogenic process in cholangiocarcinoma cases epidemically developing among workers of a printing company in Japan,” International Journal of Clinical and Experimental Pathology, vol. 7, no. 8, pp. 4745–4754, 2014. View at Google Scholar
  20. P. W. Riddles, R. L. Blakeley, and B. Zerner, “Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)—a reexamination,” Analytical Biochemistry, vol. 94, no. 1, pp. 75–81, 1979. View at Publisher · View at Google Scholar · View at Scopus
  21. D. L. Eaton and T. K. Bammler, “Concise review of the glutathione S-transferases and their significance to toxicology,” Toxicological Sciences, vol. 49, no. 2, pp. 156–164, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S-transferases. The first enzymatic step in mercapturic acid formation,” Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Google Scholar
  23. R. Thier, F. A. Wiebel, A. Hinkel et al., “Species differences in the glutathione transferase GSTT1-1 activity towards the model substrates methyl chloride and dichloromethane in liver and kidney,” Archives of Toxicology, vol. 72, no. 10, pp. 622–629, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Toyoda, T. Takada, H. Miyata, T. Ishikawa, and H. Suzuki, “Regulation of the axillary osmidrosis-associated ABCC11 protein stability by N-linked glycosylation: effect of glucose condition,” PloS One, vol. 11, no. 6, article e0157172, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Sherratt, S. Williams, J. Foster, N. Kernohan, T. Green, and J. D. Hayes, “Direct comparison of the nature of mouse and human GST T1-1 and the implications on dichloromethane carcinogenicity,” Toxicology and Applied Pharmacology, vol. 179, no. 2, pp. 89–97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. P. J. Sherratt, D. J. Pulford, D. J. Harrison, T. Green, and J. D. Hayes, “Evidence that human class theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GST T1-1 with that of classes alpha, mu and pi GST in human,” The Biochemical Journal, vol. 326, Part 3, pp. 837–846, 1997. View at Publisher · View at Google Scholar
  27. L. Zhang, C. Zong, S. Ichihara et al., “A trial to find appropriate animal models of dichloropropane-induced cholangiocarcinoma based on the hepatic distribution of glutathione S-transferases,” Journal of Occupational Health, vol. 57, no. 6, pp. 548–554, 2015. View at Publisher · View at Google Scholar
  28. M. J. Bartels and C. Timchalk, “1,2-Dichloropropane: investigation of the mechanism of mercapturic acid formation in the rat,” Xenobiotica, vol. 20, no. 10, pp. 1035–1042, 1990. View at Google Scholar
  29. H. Wefers and H. Sies, “Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity,” Archives of Biochemistry and Biophysics, vol. 224, no. 2, pp. 568–578, 1983. View at Publisher · View at Google Scholar · View at Scopus
  30. L. K. Lam, Z. Zhang, P. G. Board, and L. Xun, “Reduction of benzoquinones to hydroquinones via spontaneous reaction with glutathione and enzymatic reaction by S-glutathionyl-hydroquinone reductases,” Biochemistry, vol. 51, no. 25, pp. 5014–5021, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. B. A. Hill, H. E. Kleiner, E. A. Ryan, D. M. Dulik, T. J. Monks, and S. S. Lau, “Identification of multi-S-substituted conjugates of hydroquinone by HPLC-coulometric electrode array analysis and mass spectroscopy,” Chemical Research in Toxicology, vol. 6, no. 4, pp. 459–469, 1993. View at Publisher · View at Google Scholar
  32. E. B. Prage, R. Morgenstern, P. J. Jakobsson, D. F. Stec, M. W. Voehler, and R. N. Armstrong, “Observation of two modes of inhibition of human microsomal prostaglandin E synthase 1 by the cyclopentenone 15-deoxy-delta(12,14)-prostaglandin J(2),” Biochemistry, vol. 51, no. 11, pp. 2348–2356, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. C. M. Paumi, M. Wright, A. J. Townsend, and C. S. Morrow, “Multidrug resistance protein (MRP) 1 and MRP3 attenuate cytotoxic and transactivating effects of the cyclopentenone prostaglandin, 15-deoxy-delta(12,14)prostaglandin J2 in MCF7 breast cancer cells,” Biochemistry, vol. 42, no. 18, pp. 5429–5437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. F. M. Buratti and E. Testai, “Species- and congener-differences in microcystin-LR and -RR GSH conjugation in human, rat, and mouse hepatic cytosol,” Toxicology Letters, vol. 232, no. 1, pp. 133–140, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Jinno, T. Yoneyama, A. Morohashi, T. Kondo, and S. Asahi, “Chemical reactivity of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) in vitro,” Biopharmaceutics & Drug Disposition, vol. 32, no. 7, pp. 408–425, 2011. View at Publisher · View at Google Scholar · View at Scopus