Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017 (2017), Article ID 9863181, 12 pages
https://doi.org/10.1155/2017/9863181
Research Article

Coenzyme Q10 Regulates Antioxidative Stress and Autophagy in Acute Myocardial Ischemia-Reperfusion Injury

1Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
2Department of Geriatrics & Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China

Correspondence should be addressed to Zhang Ping; moc.621@025ikikgnahz and Jin Ge; moc.621@nosameg

Received 24 April 2017; Revised 19 June 2017; Accepted 26 July 2017; Published 19 November 2017

Academic Editor: Francisco J. Romero

Copyright © 2017 Shao Liang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Sacks, A. S. Ash, K. Ghosh, A. K. Rosen, J. B. Wong, and A. B. Rosen, “Trends in acute myocardial infarction hospitalizations: are we seeing the whole picture?” American Heart Journal, vol. 170, no. 6, pp. 1211–1219, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. K. L. Lee, L. H. Woodlief, E. J. Topol et al., “Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction: results from an international trial of 41,021 patients,” Circulation, vol. 91, no. 6, pp. 1659–1668, 1995. View at Publisher · View at Google Scholar
  3. J. Herrmann, “Peri-procedural myocardial injury: 2005 update,” European Heart Journal, vol. 26, no. 23, pp. 2493–2519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Erkol, V. Oduncu, B. Turan et al., “Neutrophil to lymphocyte ratio in acute ST-segment elevation myocardial infarction,” The American Journal of the Medical Sciences, vol. 348, no. 1, pp. 37–42, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Kwon, Y. S. Kim, A. S. Cho et al., “The novel role of mast cells in the microenvironment of acute myocardial infarction,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 5, pp. 814–825, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Sheu, P. H. Sung, S. Leu et al., “Innate immune response after acute myocardial infarction and pharmacomodulatory action of tacrolimus in reducing infarct size and preserving myocardial integrity,” Journal of Biomedical Science, vol. 20, no. 1, pp. 82–86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Song, H. Yang, H. X. Wang et al., “Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways,” Apoptosis, vol. 19, no. 4, pp. 567–580, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. S. Ang and D. Srivastava, “Oxygen: double-edged sword in cardiac function and repair,” Circulation Research, vol. 115, no. 10, pp. 824-825, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Scherz-Shouval, “Regulation of autophagy by ROS: physiology and pathology,” Trends in Biochemical Sciences, vol. 36, no. 1, pp. 30–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Mizushima and M. Komatsu, “Autophagy: renovation of cells and tissues,” Cell, vol. 147, no. 4, pp. 728–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Rahman, M. Mofarrahi, A. S. Kristof, B. Nkengfac, S. Harel, and S. N. Hussain, “Reactive oxygen species regulation of autophagy in skeletal muscles,” Antioxidants & Redox Signaling, vol. 20, no. 3, pp. 443–459, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Wen, J. Wu, F. Wang, B. Liu, C. Huang, and Y. Wei, “Deconvoluting the role of reactive oxygen species and autophagy in human diseases,” Free Radical Biology & Medicine, vol. 65, pp. 402–410, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil, and Z. Elazar, “Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4,” The EMBO Journal, vol. 26, pp. 1749–1760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Dhanasekaran and J. Ren, “The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus,” Current Neurovascular Research, vol. 2, no. 5, pp. 447–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Antonioli, M. Di Rienzo, M. Piacentini, and G. M. Fimia, “Emerging mechanisms in initiating and terminating autophagy,” Trends in Biochemical Sciences, vol. 42, no. 1, pp. 28–41, 2017. View at Publisher · View at Google Scholar
  17. N. Katunuma, A. Matsui, Q. T. Le, K. Utsumi, G. Salvesen, and A. Ohashi, “Novel procaspase-3 activating cascade mediated by lysoapoptases and its biological significances in apoptosis,” Advances in Enzyme Regulation, vol. 41, pp. 237–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Agosto, M. Azrin, K. Singh, A. S. Jaffe, and B. T. Liang, “Serum caspase-3 p17 fragment is elevated in patients with ST-segment elevation myocardial infarction,” Journal of the American College of Cardiology, vol. 57, no. 2, pp. 220-221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. Messer, “The cellular autophagy/apoptosis checkpoint during inflammation,” Cellular and Molecular Life Sciences, vol. 74, no. 7, pp. 1281–1296, 2017. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Makhija, C. Sendasgupta, U. Kiran et al., “The role of oral coenzyme Q10 in patients undergoing coronary artery bypass graft surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 22, no. 6, pp. 832–839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. A. Abd-El-Fattah, M. M. El-Sawalhi, E. R. Rashed, and M. A. El-Ghazaly, “Possible role of vitamin E, coenzyme Q10 and rutin in protection against cerebral ischemia/reperfusion injury in irradiated rats,” International Journal of Radiation Biology, vol. 86, no. 12, pp. 1070–1078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kalayci, M. M. Unal, S. Gul et al., “Effect of coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats,” BMC Neuroscience, vol. 12, p. 75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Bergamini, N. Moruzzi, A. Sblendido, G. Lenaz, and R. Fato, “A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells,” PLoS One, vol. 7, no. 3, article e33712, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. E. Madmani, A. Yusuf Solaiman, K. Tamr Agha et al., “Coenzyme Q10 for heart failure,” Cochrane Database of Systematic Reviews, vol. 6, article CD008684, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Naidoo, R. M. van Dam, W. P. Koh et al., “Plasma vitamin E and coenzyme Q10 are not associated with a lower risk of acute myocardial infarction in Singapore Chinese adults,” The Journal of Nutrition, vol. 142, no. 6, pp. 1046–1052, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Zeb, N. Ahmadi, K. Nasir et al., “Aged garlic extract and coenzyme Q10 have favorable effect on inflammatory markers and coronary atherosclerosis progression: a randomized clinical trial,” Journal of Cardiovascular Disease Research, vol. 3, no. 3, pp. 185–190, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Shao, D. Wu, P. Zhang et al., “The significance of microthrombosis and fgl2 in no-reflow phenomenon of rats with acute myocardial ischemia/reperfusion,” Clinical and Applied Thrombosis/Hemostasis, vol. 19, no. 1, pp. 19–28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Redfors, Y. Shao, and E. Omerovic, “Myocardial infarct size and area at risk assessment in mice,” Experimental & Clinical Cardiology, vol. 17, no. 4, pp. 268–272, 2012. View at Google Scholar
  29. M. A. Farhangi, B. Alipour, E. Jafarvand, and M. Khoshbaten, “Oral coenzyme Q10 supplementation in patients with nonalcoholic fatty liver disease: effects on serum vaspin, chemerin, pentraxin 3, insulin resistance and oxidative stress,” Archives of Medical Research, vol. 45, no. 7, pp. 589–595, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. Groneberg, B. Kindermann, M. Althammer et al., “Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells,” The International Journal of Biochemistry & Cell Biology, vol. 37, no. 6, pp. 1208–1218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. G. G. Schiattarella and J. A. Hill, “Therapeutic targeting of autophagy in cardiovascular disease,” Journal of Molecular and Cellular Cardiology, vol. 95, pp. 86–93, 2016. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Nishida and K. Otsu, “Autophagy during cardiac remodeling,” Journal of Molecular and Cellular Cardiology, vol. 95, pp. 11–18, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. R. F. Villa, A. Gorini, F. Ferrari, and S. Hoyer, “Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes,” Neurochemistry International, vol. 63, pp. 765–781, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Khan, F. Salloum, A. Das, L. Xi, G. W. Vetrovec, and R. C. Kukreja, “Rapamycin confers preconditioning-like protection against ischemia–reperfusion injury in isolated mouse heart and cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 41, no. 2, pp. 256–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Norman, G. M. Cohen, and E. T. Bampton, “The in vitro cleavage of the hAtg proteins by cell death proteases,” Autophagy, vol. 6, no. 8, pp. 1042–1056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. U. M. Nazim, J. H. Moon, J. H. Lee et al., “Activation of autophagy flux by metformin downregulates cellular FLICE–like inhibitory protein and enhances TRAIL- induced apoptosis,” Oncotarget, vol. 7, no. 17, pp. 23468–23481, 2016. View at Publisher · View at Google Scholar · View at Scopus