Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2018, Article ID 1039364, 13 pages
Research Article

Morinda citrifolia L. Leaf Extract Protects against Cerebral Ischemia and Osteoporosis in an In Vivo Experimental Model of Menopause

1Integrative Complementary Alternative Medicine Research and Development Center, Khon Kaen University, Khon Kaen 40002, Thailand
2Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

Correspondence should be addressed to Jintanaporn Wattanathorn; moc.oohay@wnropanatnij

Received 26 October 2017; Revised 19 January 2018; Accepted 20 February 2018; Published 25 March 2018

Academic Editor: Margarete D. Bagatini

Copyright © 2018 Jintanaporn Wattanathorn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We aimed to determine the protective effects against cerebral ischemia and osteoporosis of Morinda citrifolia extract in experimental menopause. The neuroprotective effect was assessed by giving M. citrifolia leaf extract at doses of 2, 10, and 50 mg/kg BW to the bilateral ovariectomized (OVX) rats for 7 days. Then, they were occluded in the right middle cerebral artery (MCAO) for 90 minutes. The neurological score, brain infarction volume, oxidative stress status, and ERK1/2 and eNOS activities were assessed 24 hours later. M. citrifolia improved neurological score, brain infarction, and brain oxidative stress status in the cortex of OVX rats plus the MCAO. No changes in ERK 1/2 signal pathway and NOS expression were observed in this area. Our data suggested that the neuroprotective effect of the extract might occur partly via the improvement of oxidative stress status in the cortex. The antiosteoporotic effect in OVX rats was also assessed after an 84-day intervention of M. citrifolia. The serum levels of calcium, osteocalcin, and alkaline phosphatase and osteoblast density in the tibia were increased, but the density of osteoclast was decreased in OVX rats which received the extract. Therefore, the current data suggested that the extract possessed antiosteoporotic effect by increasing bone formation but decreasing bone resorption.