Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2018, Article ID 3734250, 13 pages
https://doi.org/10.1155/2018/3734250
Research Article

Counteraction of Oxidative Stress by Vitamin E Affects Epigenetic Regulation by Increasing Global Methylation and Gene Expression of MLH1 and DNMT1 Dose Dependently in Caco-2 Cells

1Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
2Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
3Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria

Correspondence should be addressed to Alexander G. Haslberger; ta.ca.eivinu@regreblsah.rednaxela

Received 27 October 2017; Revised 18 January 2018; Accepted 29 January 2018; Published 22 March 2018

Academic Editor: Joseph Adeyemi

Copyright © 2018 Katja Zappe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, World Health Statistics 2016: Monitoring Health for the SDGs, World Health Organization, Geneva, Switzerland, 2016.
  2. N. P. Gullett, A. R. M. Ruhul Amin, S. Bayraktar et al., “Cancer prevention with natural compounds,” Seminars in Oncology, vol. 37, no. 3, pp. 258–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Fernholz, “On the constitution of α-tocopherol,” Journal of the American Chemical Society, vol. 60, no. 3, pp. 700–705, 1938. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Bunyan, D. McHale, J. Green, and S. Marcinkiewicz, “Biological potenices of ε- and ζ1-tocopherol and 5-methyltocol,” The British Journal of Nutrition, vol. 15, no. 2, pp. 253–257, 1961. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Meydani, “Vitamin E,” The Lancet, vol. 345, no. 8943, pp. 170–175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Mocchegiani, L. Costarelli, R. Giacconi et al., “Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review,” Ageing Research Reviews, vol. 14, pp. 81–101, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Kong, Q. Cai, Q. Geng et al., “Vitamin intake reduce the risk of gastric cancer: meta-analysis and systematic review of randomized and observational studies,” PLoS One, vol. 9, no. 12, article e116060, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Das Gupta and N. Suh, “Tocopherols in cancer: an update,” Molecular Nutrition & Food Research, vol. 60, no. 6, pp. 1354–1363, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Y. Peh, W. S. D. Tan, W. Liao, and W. S. F. Wong, “Vitamin E therapy beyond cancer: tocopherol versus tocotrienol,” Pharmacology & Therapeutics, vol. 162, pp. 152–169, 2016. View at Publisher · View at Google Scholar
  10. Z. A. Daud, B. Tubie, M. Sheyman et al., “Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients,” Vascular Health and Risk Management, vol. 9, pp. 747–761, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. The alpha-Tocopherol Beta Carotene Cancer Prevention Study Group, “The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers,” The New England Journal of Medicine, vol. 330, no. 15, pp. 1029–1035, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Lippman, E. A. Klein, P. J. Goodman et al., “Effect of selenium and vitamin E on risk of prostate cancer and other cancers,” JAMA, vol. 301, no. 1, pp. 39–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. R. Miller III, R. Pastor-Barriuso, D. Dalal, R. A. Riemersma, L. J. Appel, and E. Guallar, “Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality,” Annals of Internal Medicine, vol. 142, no. 1, pp. 37–46, 2005. View at Publisher · View at Google Scholar
  14. J. Emami, M. Rezazadeh, M. Rostami et al., “Co-delivery of paclitaxel and α-tocopherol succinate by novel chitosan-based polymeric micelles for improving micellar stability and efficacious combination therapy,” Drug Development and Industrial Pharmacy, vol. 41, no. 7, pp. 1137–1147, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Eitsuka, N. Tatewaki, H. Nishida, K. Nakagawa, and T. Miyazawa, “Synergistic anticancer effect of tocotrienol combined with chemotherapeutic agents or dietary components: a review,” International Journal of Molecular Sciences, vol. 17, no. 12, article e1605, 2016. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Serbinova, V. Kagan, D. Han, and L. Packer, “Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol,” Free Radical Biology & Medicine, vol. 10, no. 5, pp. 263–275, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Rahman, I. Hosen, M. M. T. Islam, and H. U. Shekhar, “Oxidative stress and human health,” Advances in Bioscience and Biotechnology, vol. 3, no. 7, pp. 997–1019, 2012. View at Publisher · View at Google Scholar
  18. M. Sthijns, A. Weseler, A. Bast, and G. Haenen, “Time in redox adaptation processes: from evolution to hormesis,” International Journal of Molecular Sciences, vol. 17, no. 12, article e1649, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Powers, L. L. Ji, A. N. Kavazis, and M. J. Jackson, “Reactive oxygen species: impact on skeletal muscle,” Comprehensive Physiology, vol. 1, pp. 941–969, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Wang, D. Lin, H. Peng, Y. Huang, J. Huang, and J. Gu, “Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species,” Cell Death & Disease, vol. 4, no. 12, article e945, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Davies, “Protein oxidation and peroxidation,” The Biochemical Journal, vol. 473, no. 7, pp. 805–825, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Esterbauer, K. H. Cheeseman, M. U. Dianzani, G. Poli, and T. F. Slater, “Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes,” The Biochemical Journal, vol. 208, no. 1, pp. 129–140, 1982. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Ayala, M. F. Muñoz, and S. Argüelles, “Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal,” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 360438, 31 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Panieri and M. M. Santoro, “ROS homeostasis and metabolism: a dangerous liason in cancer cells,” Cell Death & Disease, vol. 7, no. 6, article e2253, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Anand, A. B. Kunnumakara, C. Sundaram et al., “Cancer is a preventable disease that requires major lifestyle changes,” Pharmaceutical Research, vol. 25, no. 9, pp. 2097–2116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. B. Baylin and P. A. Jones, “A decade of exploring the cancer epigenome—biological and translational implications,” Nature Reviews Cancer, vol. 11, no. 10, pp. 726–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Daniel and T. O. Tollefsbol, “Epigenetic linkage of aging, cancer and nutrition,” The Journal of Experimental Biology, vol. 218, no. 1, pp. 59–70, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Li and Y. Zhang, “DNA methylation in mammals,” Cold Spring Harbor Perspectives in Biology, vol. 6, no. 5, article a019133, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. A. S. Yang, M. R. Estécio, K. Doshi, Y. Kondo, E. H. Tajara, and J. P. Issa, “A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements,” Nucleic Acids Research, vol. 32, no. 3, article e38, 2004. View at Publisher · View at Google Scholar
  31. H.-H. Cheung, T.-L. Lee, O. M. Rennert, and W.-Y. Chan, “DNA methylation of cancer genome,” Birth Defects Research Part C: Embryo Today: Reviews, vol. 87, no. 4, pp. 335–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. H. Kazazian Jr. and J. L. Goodier, “LINE drive. Retrotransposition and genome instability,” Cell, vol. 110, no. 3, pp. 277–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. P. M. Vertino, R. W. Yen, J. Gao, and S. B. Baylin, “De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase,” Molecular and Cellular Biology, vol. 16, no. 8, pp. 4555–4565, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Fatemi, A. Hermann, H. Gowher, and A. Jeltsch, “Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA,” European Journal of Biochemistry, vol. 269, no. 20, pp. 4981–4984, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-P. Issa, “CpG island methylator phenotype in cancer,” Nature Reviews Cancer, vol. 4, no. 12, pp. 988–993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. G. F. Crouse, “Non-canonical actions of mismatch repair,” DNA Repair, vol. 38, pp. 102–109, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. M. T. Russo, G. De Luca, P. Degan, and M. Bignami, “Different DNA repair strategies to combat the threat from 8-oxoguanine,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 614, no. 1-2, pp. 69–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. K. A. Johnson, M. L. Mierzwa, S. P. Fink, and L. J. Marnett, “MutS recognition of exocyclic DNA adducts that are endogenous products of lipid oxidation,” The Journal of Biological Chemistry, vol. 274, no. 38, pp. 27112–27118, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. L. A. VanderVeen, M. F. Hashim, Y. Shyr, and L. J. Marnett, “Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 24, pp. 14247–14252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. E. P. Loughery, P. D. Dunne, K. M. O'Neill, R. R. Meehan, J. R. McDaid, and C. P. Walsh, “DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response,” Human Molecular Genetics, vol. 20, no. 16, pp. 3241–3255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Ding, E. M. Bonham, B. E. Hannon, T. R. Amick, S. B. Baylin, and H. M. O’Hagan, “Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage,” Journal of Molecular Cell Biology, vol. 8, no. 3, pp. 244–254, 2016. View at Publisher · View at Google Scholar · View at Scopus
  42. E. B. Kurutas, “The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state,” Nutrition Journal, vol. 15, no. 1, p. 71, 2016. View at Publisher · View at Google Scholar · View at Scopus
  43. G. R. Drummond, S. Selemidis, K. K. Griendling, and C. G. Sobey, “Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets,” Nature Reviews Drug Discovery, vol. 10, no. 6, pp. 453–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Koschutnig, S. Heikkinen, S. Kemmo, A.-M. Lampi, V. Piironen, and K.-H. Wagner, “Cytotoxic and apoptotic effects of single and mixed oxides of β-sitosterol on HepG2-cells,” Toxicology In Vitro, vol. 23, no. 5, pp. 755–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K.-H. Wagner, A. Jürß, B. Zarembach, and I. Elmadfa, “Impact of antiseptics on radical metabolism, antioxidant status and genotoxic stress in blood cells: povidone-iodine versus octenidine dihydrochloride,” Toxicology in Vitro, vol. 18, no. 4, pp. 411–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Spitzwieser, E. Holzweber, G. Pfeiler, S. Hacker, and M. Cichna-Markl, “Applicability of HIN-1, MGMT and RASSF1A promoter methylation as biomarkers for detecting field cancerization in breast cancer,” Breast Cancer Research, vol. 17, no. 1, p. 125, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Migheli, A. Stoccoro, F. Coppedè et al., “Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation,” PLoS One, vol. 8, no. 1, article e52501, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. O. V. Leontieva, Z. N. Demidenko, and M. V. Blagosklonny, “Rapamycin reverses insulin resistance (IR) in high-glucose medium without causing IR in normoglycemic medium,” Cell Death & Disease, vol. 5, no. 5, article e1214, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. WHO, “Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation,” Tech. Rep., WHO Technical Report Series 894, Geneva, Switzerland, 2000. View at Google Scholar
  50. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” The Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Newsholme, E. P. Haber, S. M. Hirabara et al., “Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity,” The Journal of Physiology, vol. 583, no. 1, pp. 9–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Remely, F. Ferk, S. Sterneder et al., “Vitamin E modifies high-fat diet-induced increase of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice,” Nutrients, vol. 9, no. 12, p. 607, 2017. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Berger, N. Vega, M. Weiss-Gayet, and A. Géloën, “Gene network analysis of glucose linked signaling pathways and their role in human hepatocellular carcinoma cell growth and survival in HuH7 and HepG2 cell lines,” BioMed Research International, vol. 2015, Article ID 821761, 19 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Yara, J.-C. Lavoie, and E. Levy, “Oxidative stress and DNA methylation regulation in the metabolic syndrome,” Epigenomics, vol. 7, no. 2, pp. 283–300, 2015. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Aykin-Burns, I. M. Ahmad, Y. Zhu, L. W. Oberley, and D. R. Spitz, “Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation,” The Biochemical Journal, vol. 418, no. 1, pp. 29–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Ahmed, P. W. Eide, I. A. Eilertsen et al., “Epigenetic and genetic features of 24 colon cancer cell lines,” Oncogene, vol. 2, no. 9, article e71, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. O. J. Switzeny, E. Müllner, K.-H. Wagner, H. Brath, E. Aumüller, and A. G. Haslberger, “Vitamin and antioxidant rich diet increases MLH1 promoter DNA methylation in DMT2 subjects,” Clinical Epigenetics, vol. 4, no. 1, p. 19, 2012. View at Publisher · View at Google Scholar
  58. S. Kishikawa, T. Murata, H. Ugai, T. Yamazaki, and K. K. Yokoyama, “Control elements of Dnmt1 gene are regulated in cell-cycle dependent manner,” Nucleic Acids Symposium Series, vol. 3, no. 1, pp. 307-308, 2003. View at Publisher · View at Google Scholar
  59. R. Mjelle, S. A. Hegre, P. A. Aas et al., “Cell cycle regulation of human DNA repair and chromatin remodeling genes,” DNA Repair, vol. 30, pp. 53–67, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. A. K. Smolarek, J. Y. So, B. Burgess et al., “Dietary administration of δ- and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen receptor–positive, but not HER-2 breast cancer,” Cancer Prevention Research, vol. 5, no. 11, pp. 1310–1320, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. J. H. Houtgraaf, J. Versmissen, and W. J. van der Giessen, “A concise review of DNA damage checkpoints and repair in mammalian cells,” Cardiovascular Revascularization Medicine, vol. 7, no. 3, pp. 165–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. E. H. Sarsour, A. L. Kalen, and P. C. Goswami, “Manganese superoxide dismutase regulates a redox cycle within the cell cycle,” Antioxidants & Redox Signaling, vol. 20, no. 10, pp. 1618–1627, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Djelloul, M. E. Forgue-Lafitte, B. Hermelin et al., “Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 function in human colonic Caco-2 cells. Status of the pRb1 and pRb2 tumor suppressor gene products,” FEBS Letters, vol. 406, no. 3, pp. 234–242, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. W. Wongpaiboonwattana, P. Tosukhowong, T. Dissayabutra, A. Mutirangura, and C. Boonla, “Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 6, pp. 3773–3778, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Arányi, A. Váradi, I. Simon, and G. E. Tusnády, “The BiSearch web server,” BMC Bioinformatics, vol. 7, no. 1, p. 431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Yates, W. Akanni, M. R. Amode et al., “Ensembl 2016,” Nucleic Acids Research, vol. 44, no. D1, pp. D710–D716, 2016. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Li, Y. Wang, Z. Zhang, X. Yao, J. Ge, and Y. Zhao, “Correlation of MLH1 and MGMT methylation levels between peripheral blood leukocytes and colorectal tissue DNA samples in colorectal cancer patients,” Oncology Letters, vol. 6, no. 5, pp. 1370–1376, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Tannorella, A. Stoccoro, G. Tognoni et al., “Methylation analysis of multiple genes in blood DNA of Alzheimer’s disease and healthy individuals,” Neuroscience Letters, vol. 600, pp. 143–147, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. E. M. Wolff, H.-M. Byun, H. F. Han et al., “Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer,” PLoS Genetics, vol. 6, no. 4, article e1000917, 2010. View at Publisher · View at Google Scholar · View at Scopus