Review Article

The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives

Table 2

The antioxidant activity of polyphenols in both in vitro and in vivo models.

Authors, yearSourcesMain polyphenolsCell models or animal modelsAntioxidant activity changes

(Baird and Dinkova-Kostova 2011) [49]L. coromandelica barkGallic acid, caffeic acid, (-)-epigallocatechin-3-gallate,
chlorogenic acid, catechin
RAW 264.7 cellsCellular ROS production↓,
SOD, CSH-Px, and CAT activities↑
(Kim, Kim et al. 2011) [50]PycnogenolProcyanidins, phenolic compoundsHigh glucose-treated renal tubular cellsLipid peroxidation↓, total reactive species↓, superoxide↓, nitric oxide (NO(·))↓, peroxynitrite (ONOO(-))↓, iNOS↓, COX-2↓, NF-κB nuclear translocation↓.
(Tsai, Hsu et al. 2017) [51]Chemical hemisynthesisResveratrolHuman fibroblast-like synoviocytesNADPH oxidase activity ↓, ROS generation↓
(Adefegha, Oyeleye et al. 2018) [52]African crocus and wonderful kola seedsPhenolic acids, flavonoidsRat penile homogenateFeSO4- and SNP-induced lipid peroxidation↓
(Lunder, Roskar et al. 2018) [53]ConiferousNDMouse C2C12 myoblast cellsIntracellular ROS production↓
(Oliveira, Dare et al. 2018) [54]The leaves of Nectandra hihuaFlavonoids quercitrin, avicularin, juglalin, afzelin, astragalinL929 fibroblastsROS production↓, lipid peroxidation inhibition↓
(Acero, Gradillas et al. 2019) [55]Spanish local varieties of Prunus avium (L.)NDHepG2 cellsXOD↓, ROS↓
(Sun, Tao et al. 2019) [56]Fresh citrus fruitsFlavonoids, phenolic acidsIntestinal HepG2 cellsCAA values ↑
(Nauman, Kale et al. 2018) [57]Chemical hemisynthesisGallic acid, quercetin, rutin, acetylsalicylic acidThe ex-liver of micePeroxidative damage in microsomes↓, protein carbonyl in cytosolic fraction↓
(Liu, Ren et al. 2014) [58]NDResveratrolCK-exposed miceThe MDA activity↓, SOD, CSH-Px, and CAT activities↑
(Auberval, Dal et al. 2017) [59]Red wineResveratrolWistar ratsLipid peroxides↓, oxidative proteins↓.
(Jian, Ding et al. 2018) [60]Loquat leafFlavonoidsPM2.5-induced NAFLD miceOxidative MDA↓, SOD↑
(Li, Chen et al. 2018) [61]D. loddigesii, DendrobiumBibenzyls, phenanthrenesDiabetic miceThe MDA activity↓, SOD, CSH-Px, and CAT activities↑
(Nauman, Kale et al. 2018) [57]Chemical hemisynthesisGallic acid, acetylsalicylic acidC57BL/6 miceSOD, CSH-Px, and CAT activities↑, lipid peroxidation↓
(Song, Park et al. 2018) [62]Walnut, chokeberryAnthocyaninsBalb/c miceMDA↓, lipid peroxidation↓, SOD and CSH-Px activities↑, antioxidant enzyme gene expression↑
(Zyzelewicz, Bojczuk et al. 2018) [63]Cocoa beanFlavan-3-ols, flavonols, phenolic acidsMale Wistar ratsGSH↑, GSSG↓
(Qian, Wang et al. 2019) [64]Bilberry and black currantAnthocyaninsMale ICR miceSUA level↓, XOD activity↓, XOD mRNA and protein expressions↓

(↓): decrease; (↑): increase; ND: not detected; ROS: reactive oxygen species; NADPH: nicotinamide adenine dinucleotide phosphate; SNP: sodium nitroprusside; CAA: cellular antioxidant activity; iNOS: inducible nitric oxide synthase; COX-2: cyclooxygenase-2; NF-κB: nuclear factor-kappa; XOD: xanthine oxidase; SOD: superoxide dismutase; CSH-Px: glutathione peroxidase; GSH: glutathione; GSSG: oxidized glutathione; CK: cigarette smoke; MDA: malondialdehyde; CAT: chloramphenicol acetyl transferase; SUA: serum uric acid; NAFLD: nonalcoholic fatty liver disease.