Oxidative Medicine and Cellular Longevity
 Journal metrics
Acceptance rate48%
Submission to final decision56 days
Acceptance to publication37 days
CiteScore7.900
Journal Citation Indicator0.710
Impact Factor6.543

Nrf2 Activation Attenuates Chronic Constriction Injury-Induced Neuropathic Pain via Induction of PGC-1α-Mediated Mitochondrial Biogenesis in the Spinal Cord

Read the full article

 Journal profile

Oxidative Medicine and Cellular Longevity publishes research involving cellular and molecular mechanisms of oxidative stress in the nervous system and related organ systems in relation to aging, immune function, vascular biology, and metabolism.

 Editor spotlight

Chief Editor Dr Vasquez-Vivar has experience in free radical and redox biology research including the discovery of the role of tetrahydrobiopterin in the regulation of superoxide generation by endothelial and neuronal nitric oxide synthase.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Shenjinhuoxue Mixture Attenuates Inflammation, Pain, and Cartilage Degeneration by Inhibiting TLR-4 and NF-κB Activation in Rats with Osteoarthritis: A Synergistic Combination of Multitarget Active Phytochemicals

Osteoarthritis (OA), a highly prevalent chronic joint disease, involves a complex network of inflammatory mediators that not only triggers pain and cartilage degeneration but also accelerates disease progression. Traditional Chinese medicinal shenjinhuoxue mixture (SHM) shows anti-inflammatory and analgesic effects against OA with remarkable clinical efficacy. This study explored the mechanism underlying anti-OA properties of SHM and evaluated its efficacy and safety via in vivo experiments. Through network pharmacology and published literature, we identified the key active phytochemicals in SHM, including β-sitosterol, oleanolic acid, licochalcone A, quercetin, isorhamnetin, kaempferol, morusin, lupeol, and pinocembrin; the pivotal targets of which are TLR-4 and NF-κB, eliciting anti-OA activity. These phytochemicals can enter the active pockets of TLR-4 and NF-κB with docking , as shown in molecular docking models. By using surface plasmon resonance assay, licochalcone A and oleanolic acid were found to have good TLR-4-binding affinity. In OA rats, oral SHM at mid and high doses (8.72 g/kg and 26.2 g/kg) over 6 weeks significantly alleviated mechanical and thermal hyperalgesia (). Accordingly, the expression of inflammatory mediators (TLR-4, interleukin (IL-) 1 receptor-associated kinase 1 (IRAK1), NF-κB-p65, tumor necrosis factor (TNF-) α, IL-6, and IL-1β), receptor activator of the NF-κB ligand (RANKL), and transient receptor potential vanilloid 1 (TRPV1) in the synovial and cartilage tissue of OA rats was significantly decreased (). Moreover, pathological observation illustrated amelioration of cartilage degeneration and joint injury. In chronic toxicity experiment of rats, SHM at 60 mg/kg demonstrated the safety. SHM had an anti-inflammatory effect through a synergistic combination of active phytochemicals to attenuate pain and cartilage degeneration by inhibiting TLR-4 and NF-κB activation. This study provided the experimental foundation for the development of SHM into a more effective dosage form or new drugs for OA treatment.

Research Article

Oridonin Alters Hepatic Urea Cycle via Gut Microbiota and Protects against Acetaminophen-Induced Liver Injury

Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the western world. Oridonin (OD), which is the major active ingredient of the traditional Chinese medicine Rabdosia rubescens, reportedly exerts anti-inflammatory and antioxidative effects. Here, we first find that OD protects against APAP-induced hepatotoxicity. The results of hepatic tissue-associated RNA-seq and metabolomics showed that the protective effects of OD were dependent upon urea cycle regulation. And such regulation of OD is gut microbiota partly dependent, as demonstrated by fecal microbiota transplantation (FMT). Furthermore, using 16S rRNA sequencing, we determined that OD significantly enriched intestinal Bacteroides vulgatus, which activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to regulate redox homeostasis against APAP by urea cycle. In conclusion, our study suggests that the Bacteroides vulgatus-urea cycle-Nrf2 axis may be a potential target for reducing APAP-induced liver injury, which is altered by OD.

Review Article

ROS as Regulators of Cellular Processes in Melanoma

In this review, we examine the multiple roles of ROS in the pathogenesis of melanoma, focusing on signal transduction and regulation of gene expression. In recent years, different studies have analyzed the dual role of ROS in regulating the redox system, with both negative and positive consequences on human health, depending on cell concentration of these agents. High ROS levels can result from an altered balance between oxidant generation and intracellular antioxidant activity and can produce harmful effects. In contrast, low amounts of ROS are considered beneficial, since they trigger signaling pathways involved in physiological activities and programmed cell death, with protective effects against melanoma. Here, we examine these beneficial roles, which could have interesting implications in melanoma treatment.

Research Article

SPP1 Promotes Enzalutamide Resistance and Epithelial-Mesenchymal-Transition Activation in Castration-Resistant Prostate Cancer via PI3K/AKT and ERK1/2 Pathways

The bottleneck arising from castration-resistant prostate cancer (CRPC) treatment is its high metastasis potential and antiandrogen drug resistance, which severely affects survival time of prostate cancer (PCa) patients. Secreted phosphoprotein 1 (SPP1) is a cardinal mediator of tumor-associated inflammation and facilitates metastasis. In our previous study, we firstly revealed SPP1 was a potential hub signature for predicting metastatic CRPC (mCRPC) development. Herein, we integrated multiple databases to explore the association of SPP1 expression with prognosis, survival, and metastatic levels in CRPC progression and investigated SPP1 expression in PCa tissues and cell lines. Next, PCa cell lines with overexpression or depletion of SPP1 were established to study the effect of SPP1 on enzalutamide sensitivity and adhesion and migration of prostate cancer cell lines and further explore the underlying regulatory mechanisms. Bioinformatics analysis, polymerase chain reaction (PCR), immunohistochemical staining, and western blot results suggested SPP1 upregulation had strong relationship with the malignant progression of CRPC and enzalutamide resistance. SPP1 knockdown enhanced enzalutamide sensitivity and repressed invasion and migration of prostate cancer cells. Importantly, upregulating SPP1 promoted, while silencing SPP1 attenuated epithelial-mesenchymal-transition (EMT). Our results further demonstrated that SPP1 overexpression maintains the activation of PI3K/AKT and ERK1/2 signaling pathways. Overall, our findings unraveled the functional role and clinical significance of SPP1 in PCa progression and help to discover new potential targets against mCRPC.

Research Article

Parameters of Oxidative Stress, Vitamin D, Osteopontin, and Melatonin in Patients with Lip, Oral Cavity, and Pharyngeal Cancer

Lip, oral cavity, and pharyngeal cancers (LOCP) constitute a group of rare neoplasms with unfavorable prognosis. So far, not much is known about the role of vitamin D and oxidative stress in the pathogenesis of LOCP in the European population. The aim of the study was to determine the concentrations of vitamin D, osteopontin, melatonin, and malondialdehyde (MDA) as markers of oxidative stress and/or inflammation, as well as the activities of antioxidant enzymes in the course of LOCP. The vitamin D, melatonin, and osteopontin concentrations in blood serum, the MDA levels in erythrocytes and blood plasma, and the activities of superoxide dismutase (SOD-1), catalase (CAT), and glutathione peroxidase (GPx) in erythrocytes were measured in blood samples taken from 25 LOCP patients of middle age (YCG), 20 LOCP elderly patients (OCG), and 25 healthy middle-aged volunteers. In both cancer groups, decreases in vitamin D and CAT, as well as increases in osteopontin and blood plasma MDA, were observed. An increase in GPx activity in YCG and a decrease in melatonin level in OCG were found. The results indicate the vitamin D deficiency and disturbed oxidant-antioxidant homeostasis in LOCP patients. Osteopontin seems to be associated with LOCP carcinogenesis and requires further research.

Research Article

Using Genomic and Transcriptome Analyses to Identify the Role of the Oxidative Stress Pathway in Renal Clear Cell Carcinoma and Its Potential Therapeutic Significance

Oxidative stress (OS) refers to endogenous and/or exogenous stimulation when the balance between oxidation and antioxidants in the body is disrupted, resulting in excessive production of free radicals. Excessive free radicals exert a series of negative effects on the body, which can result in the oxidation of and infliction of damage on biological molecules and further cause cell death and tissue damage, which are related to many pathological processes. Pathways related to OS have always been the focus of medical research. Several studies are being conducted to develop strategies to treat cancer by exploring the OS pathways. Therefore, this study is aimed at determining the correlation between the OS pathway and kidney renal clear cell carcinoma (KIRC) through bioinformatics analysis, at proving the effect of common anticancer drugs on the OS pathway, and at constructing a prognosis model of patients with KIRC based on several genes with the strongest correlation between the OS pathway and KIRC. We first collected and analyzed gene expression and clinical information of related patients through TCGA database. Then, we divided the samples into three clusters according to their gene expression levels obtained through cluster analysis. Using these three clusters, we performed GDSC drug analysis and GSEA analysis and examined the correlation among the OS pathway, histone modification, and immune cell infiltration. We also analyzed the response of anti-PD-1 and anti-CTLA-4 to the OS pathway. Thereafter, we used LASSO regression to select the most suitable nine genes, combined with the clinicopathological characteristics to establish the prognosis model of patients with KIRC, and verified the scientific precision of the model. Finally, tumor mutational burden was calculated to verify whether patients would benefit from immunotherapy. The results of this study may provide a reference for the establishment of treatment strategies for patients with KIRC.

Oxidative Medicine and Cellular Longevity
 Journal metrics
Acceptance rate48%
Submission to final decision56 days
Acceptance to publication37 days
CiteScore7.900
Journal Citation Indicator0.710
Impact Factor6.543
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.