Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2011 (2011), Article ID 594860, 5 pages
http://dx.doi.org/10.4061/2011/594860
Review Article

Imaging Impulsivity in Parkinson's Disease and the Contribution of the Subthalamic Nucleus

1Toronto Western Research Institute and Hospital, UHN, University of Toronto, Toronto, ON, Canada M5T 2S8
2PET Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada M5T 2S8

Received 29 October 2010; Accepted 20 April 2011

Academic Editor: Irena Rektorova

Copyright © 2011 Nicola Ray et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Potenza, “The neurobiology of pathological gambling and drug addiction: an overview and new findings,” Philosophical Transactions of the Royal Society of London. Series B, vol. 363, no. 1507, pp. 3181–3189, 2008. View at Publisher · View at Google Scholar
  2. C. Esposito-Smythers, A. Spirito, C. Rizzo, J. E. McGeary, and V. S. Knopik, “Associations of the DRD2 TaqIA polymorphism with impulsivity and substance use: preliminary results from a clinical sample of adolescents,” Pharmacology, Biochemistry and Behavior, vol. 93, no. 3, pp. 306–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. T. D. L. Steeves, J. Miyasaki, M. Zurowski et al., “Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study,” Brain, vol. 132, no. 5, pp. 1376–1385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. W. Buckholtz, M. T. Treadway, R. L. Cowan et al., “Dopaminergic network differences in human impulsivity,” Science, vol. 329, no. 5991, p. 532, 2010. View at Publisher · View at Google Scholar
  5. A. Parent and L. N. Hazrati, “Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry,” Brain Research Reviews, vol. 20, no. 1, pp. 128–154, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Hamani, J. A. Saint-Cyr, J. Fraser, M. Kaplitt, and A. M. Lozano, “The subthalamic nucleus in the context of movement disorders,” Brain, vol. 127, no. 1, pp. 4–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Temel, A. Blokland, H. W. M. Steinbusch, and V. Visser-Vandewalle, “The functional role of the subthalamic nucleus in cognitive and limbic circuits,” Progress in Neurobiology, vol. 76, no. 6, pp. 393–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. D. Logan, W. B. Cowan, and K. A. Davis, “On the ability to inhibit simple and choice reaction time responses: a model and a method,” Journal of Experimental Psychology: Human Perception and Performance, vol. 10, no. 2, pp. 276–291, 1984. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Lawrence, J. Luty, N. A. Bogdan, B. J. Sahakian, and L. Clark, “Impulsivity and response inhibition in alcohol dependence and problem gambling,” Psychopharmacology, vol. 207, no. 1, pp. 163–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. E. Goudriaan, J. Oosterlaan, E. De Beurs, and W. Van Den Brink, “The role of self-reported impulsivity and reward sensitivity versus neurocognitive measures of disinhibition and decision-making in the prediction of relapse in pathological gamblers,” Psychological Medicine, vol. 38, no. 1, pp. 41–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Verdejo-García, A. Bechara, E. C. Recknor, and M. Pérez-García, “Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive and emotional correlates of addiction,” Journal of the International Neuropsychological Society, vol. 12, no. 3, pp. 405–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Aron and R. A. Poldrack, “Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus,” The Journal of Neuroscience, vol. 26, no. 9, pp. 2424–2433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. U. Forstmann, S. Jahfari, H. S. Scholte, U. Wolfensteller, W. P. M. van den Wildenberg, and K. R. Ridderinkhof, “Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: a model-based approach,” The Journal of Neuroscience, vol. 28, no. 39, pp. 9790–9796, 2008. View at Publisher · View at Google Scholar
  14. G. Xue, A. R. Aron, and R. A. Poldrack, “Common neural substrates for inhibition of spoken and manual responses,” Cerebral Cortex, vol. 18, no. 8, pp. 1923–1932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. R. Aron, T. E. Behrens, S. Smith, M. J. Frank, and R. A. Poldrack, “Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI,” The Journal of Neuroscience, vol. 27, no. 14, pp. 3743–3752, 2007. View at Publisher · View at Google Scholar
  16. C. R. Li, P. Yan, R. Sinha, and T. W. Lee, “Subcortical processes of motor response inhibition during a stop signal task,” NeuroImage, vol. 41, no. 4, pp. 1352–1363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Nambu, H. Tokuno, and M. Takada, “Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway,” Neuroscience Research, vol. 43, no. 2, pp. 111–117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Baunez and T. W. Robbins, “Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat,” Neuroscience, vol. 92, no. 4, pp. 1343–1356, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Cassidy, P. Mazzone, A. Oliviero et al., “Movement-related changes in synchronization in the human basal ganglia,” Brain, vol. 125, no. 6, pp. 1235–1246, 2002. View at Google Scholar · View at Scopus
  20. A. A. Kühn, A. Kupsch, G. H. Schneider, and P. Brown, “Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease,” The European Journal of Neuroscience, vol. 23, no. 7, pp. 1956–1960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. N. J. Ray, N. Jenkinson, S. Wang et al., “Local field potential beta activity in the subthalamic nucleus of patients with Parkinson's disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation,” Experimental Neurology, vol. 213, no. 1, pp. 108–113, 2008. View at Publisher · View at Google Scholar
  22. M. Weinberger, W. D. Hutchison, and J. O. Dostrovsky, “Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia?” Experimental Neurology, vol. 219, no. 1, pp. 58–61, 2009. View at Publisher · View at Google Scholar
  23. A. Eusebio and P. Brown, “Synchronisation in the beta frequency-band—the bad boy of parkinsonism or an innocent bystander?” Experimental Neurology, vol. 217, no. 1, pp. 1–3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Frank, J. Samanta, A. A. Moustafa, and S. J. Sherman, “Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism,” Science, vol. 318, no. 5854, pp. 1309–1312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Jahanshahi, C. M. Ardouin, R. G. Brown et al., “The impact of deep brain stimulation on executive function in Parkinson's disease,” Brain, vol. 123, no. 6, pp. 1142–1154, 2000. View at Google Scholar · View at Scopus
  26. T. Hershey, F. J. Revilla, A. Wernle, P. S. Gibson, J. L. Dowling, and J. S. Perlmutter, “Stimulation of STN impairs aspects of cognitive control in PD,” Neurology, vol. 62, no. 7, pp. 1110–1114, 2004. View at Google Scholar · View at Scopus
  27. K. Witt, U. Pulkowski, J. Herzog et al., “Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease,” Archives of Neurology, vol. 61, no. 5, pp. 697–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Thobois, G. R. Hotton, S. Pinto et al., “STN stimulation alters pallidal-frontal coupling during response selection under competition,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 6, pp. 1173–1184, 2007. View at Publisher · View at Google Scholar
  29. M. C. Campbell, M. Karimi, P. M. Weaver et al., “Neural correlates of STN DBS-induced cognitive variability in Parkinson disease,” Neuropsychologia, vol. 46, no. 13, pp. 3162–3169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Ballanger, T. van Eimeren, E. Moro et al., “Stimulation of the subthalamic nucleus and impulsivity: release your horses,” Annals of Neurology, vol. 66, no. 6, pp. 817–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. N. J. Ray, N. Jenkinson, J. Brittain et al., “The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson's disease,” Neuropsychologia, vol. 47, no. 13, pp. 2828–2834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. A. Wylie, K. R. Ridderinkhof, W. J. Elias et al., “Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson's disease,” Brain, vol. 133, no. 12, pp. 3611–3624, 2010. View at Publisher · View at Google Scholar
  33. T. Hershey, M. C. Campbell, T. O. Videen et al., “Mapping Go-No-Go performance within the subthalamic nucleus region,” Brain, vol. 133, no. 12, pp. 3625–3634, 2010. View at Publisher · View at Google Scholar
  34. S. F. Miedl, T. Fehr, G. Meyer, and M. Herrmann, “Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI,” Psychiatry Research, vol. 181, no. 3, pp. 165–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. T. van Eimeren, G. Pellecchia, R. Cilia et al., “Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD,” Neurology, vol. 75, no. 19, pp. 1711–1716, 2010. View at Publisher · View at Google Scholar
  36. T. Witjas, C. Baunez, J. M. Henry et al., “Addiction in Parkinson's disease: impact of subthalamic nucleus deep brain stimulation,” Movement Disorders, vol. 20, no. 8, pp. 1052–1055, 2005. View at Publisher · View at Google Scholar
  37. C. Ardouin, V. Voon, Y. Worbe et al., “Pathological gambling in Parkinson's disease improves on chronic subthalamic nucleus stimulation,” Movement Disorders, vol. 21, no. 11, pp. 1941–1946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Lim, S. S. O'Sullivan, K. Kotschet et al., “Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson's disease,” Journal of Clinical Neuroscience, vol. 16, no. 9, pp. 1148–1152, 2009. View at Publisher · View at Google Scholar
  39. L. M. Romito, M. Raja, A. Daniele et al., “Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson's disease,” Movement Disorders, vol. 17, no. 6, pp. 1371–1374, 2002. View at Publisher · View at Google Scholar
  40. P. Doshi and P. Bhargava, “Hypersexuality following subthalamic nucleus stimulation for Parkinson's disease,” Neurology India, vol. 56, no. 4, pp. 474–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. H. M. M. Smeding, A. E. Goudriaan, E. M. J. Foncke, P. R. Schuurman, J. D. Speelman, and B. Schmand, “Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 517–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Sensi, R. Eleopra, M. A. Cavallo et al., “Explosive-aggressive behavior related to bilateral subthalamic stimulation,” Parkinsonism and Related Disorders, vol. 10, no. 4, pp. 247–251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. L. Houeto, V. Mesnage, L. Mallet et al., “Behavioural disorders, Parkinson's disease and subthalamic stimulation,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 72, no. 6, pp. 701–707, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Giovannoni, J. D. O'Sullivan, K. Turner, A. J. Manson, and A. J. Lees, “Hedonistic homeostatic dysregulation in patients with Parkinson's disease on dopamine replacement therapies,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 68, no. 4, pp. 423–428, 2000. View at Google Scholar
  45. P. Krack, A. Batir, N. Van Blercom et al., “Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease,” The New England Journal of Medicine, vol. 349, no. 20, pp. 1925–1934, 2003. View at Publisher · View at Google Scholar
  46. T. D. Hälbig, W. Tse, P. G. Frisina et al., “Subthalamic deep brain stimulation and impulse control in Parkinson's disease,” European Journal of Neurology, vol. 16, no. 4, pp. 493–497, 2009. View at Publisher · View at Google Scholar
  47. M. Alegret, C. Junqué, F. Valldeoriola et al., “Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease,” Archives of Neurology, vol. 58, no. 8, pp. 1223–1227, 2001. View at Google Scholar · View at Scopus
  48. K. Dujardin, L. Defebvre, P. Krystkowiak, S. Blond, and A. Destée, “Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson's disease,” Journal of Neurology, vol. 248, no. 7, pp. 603–611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Moretti, P. Torre, R. M. Antonello et al., “Neuropsychological changes after subthalamic nucleus stimulation: a 12 month follow-up in nine patients with Parkinson's disease,” Parkinsonism and Related Disorders, vol. 10, no. 2, pp. 73–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Pillon, C. Ardouin, P. Damier et al., “Neuropsychological changes between ‘off’ and ‘on’ STN or GPi stimulation in Parkinson's disease,” Neurology, vol. 55, no. 3, pp. 411–418, 2000. View at Google Scholar · View at Scopus
  51. V. Voon, P. Krack, A. E. Lang et al., “A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease,” Brain, vol. 131, no. 10, pp. 2720–2728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Voon, C. Kubu, P. Krack, J. Houeto, and A. I. Tröster, “Deep brain stimulation: neuropsychological and neuropsychiatric issues,” Movement Disorders, vol. 21, supplement 14, pp. S305–S327, 2006. View at Publisher · View at Google Scholar