Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2011, Article ID 679283, 7 pages
http://dx.doi.org/10.4061/2011/679283
Case Report

Dementia after DBS Surgery: A Case Report and Literature Review

11st Department of Neurology, St. Anne's University Hospital, Medical School of Masaryk University, Pekarska 53, 656 91 Brno, Czech Republic
2Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, 602 00 Brno, Czech Republic

Received 6 December 2010; Revised 18 August 2011; Accepted 9 September 2011

Academic Editor: Dag Aarsland

Copyright © 2011 I. Rektorova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Rajput, A. Voll, M. L. Rajput, C. A. Robinson, and A. Rajput, “Course in parkinson disease subtypes: a 39-year clinicopathologic study,” Neurology, vol. 73, no. 3, pp. 206–212, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. Marras, P. Rochon, and A. E. Lang, “Predicting motor decline and disability in Parkinson disease: a systematic review,” Archives of Neurology, vol. 59, no. 11, pp. 1724–1728, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Hilker, K. Schweitzer, S. Coburger et al., “Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity,” Archives of Neurology, vol. 62, no. 3, pp. 378–382, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. Emre, D. Aarsland, R. Brown et al., “Clinical diagnostic criteria for dementia associated with Parkinson's disease,” Movement Disorders, vol. 22, no. 12, pp. 1689–1707, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. A. Hely, J. G. L. Morris, W. G. J. Reid, and R. Trafficante, “Sydney Multicenter Study of Parkinson's disease: non-L-dopa-responsive problems dominate at 15 years,” Movement Disorders, vol. 20, no. 2, pp. 190–199, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. C. Buter, A. van den Hout, F. E. Matthews, J. P. Larsen, C. Brayne, and D. Aarsland, “Dementia and survival in Parkinson disease: a 12-year population study,” Neurology, vol. 70, no. 13, pp. 1017–1022, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. A. Saint-Cyr, L. L. Trépanier, R. Kumar, A. M. Lozano, and A. E. Lang, “Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease,” Brain, vol. 123, no. 10, pp. 2091–2108, 2000. View at Google Scholar · View at Scopus
  8. P. Krack, A. Batir, N. Van Blercom et al., “Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease,” New England Journal of Medicine, vol. 349, no. 20, pp. 1925–1934, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. L. Benabid, S. Chabardes, J. Mitrofanis, and P. Pollak, “Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease,” The Lancet Neurology, vol. 8, no. 1, pp. 67–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Umemura, J. L. Jaggi, H. I. Hurtig et al., “Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients,” Journal of Neurosurgery, vol. 98, no. 4, pp. 779–784, 2003. View at Google Scholar · View at Scopus
  11. G. Kleiner-Fisman, J. Herzog, D. N. Fisman et al., “Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes,” Movement Disorders, vol. 21, no. 14, supplement 14, pp. S290–S304, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. G. L. Defer, H. Widner, R. M. Marié, P. Rémy, and M. Levivier, “Core Assessment Program for Surgical Interventional Therapies in Parkinson's disease (CAPSIT-PD),” Movement Disorders, vol. 14, no. 4, pp. 572–584, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Burns, B. Lawlor, and S. Craig, Eds., Assessment Scales in Old Age Psychiatry, Martin Dunitz, Taylor and Francis Group, London, UK, 2nd edition, 2004.
  14. S. Fahn, R. L. Elston, and Members of the UPDRS Development Committee, “Unified Parkinson‘s Disease Rating Scale,” in Recent Developments in Parkinson‘s Disease, S. Fahn, C. D. Marsden, M. Goldstein, and D. B. Calne, Eds., vol. 2, pp. 153–163, MacMillan, New York, NY, USA, 1987. View at Google Scholar
  15. M. Balaz, H. Srovnalova, I. Rektorova, and I. Rektor, “The effect of cortical repetitive transcranial magnetic stimulation on cognitive event-related potentials recorded in the subthalamic nucleus,” Experimental Brain Research, vol. 203, no. 2, pp. 317–327, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery, vol. 56, no. 4, pp. 722–728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Gorgulho, A. A. F. De Salles, L. Frighetto, and E. Behnke, “Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery,” Journal of Neurosurgery, vol. 102, no. 5, pp. 888–896, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. H. Xiaowu, J. Xiufeng, Z. Xiaoping et al., “Risks of intracranial hemorrhage in patients with Parkinson's disease receiving deep brain stimulation and ablation,” Parkinsonism and Related Disorders, vol. 16, no. 2, pp. 96–100, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. A. Sansur, R. C. Frysinger, N. Pouratian et al., “Incidence of symptomatic hemorrhage after stereotactic electrode placement,” Journal of Neurosurgery, vol. 107, no. 5, pp. 998–1003, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. E. Lyons, S. B. Wilkinson, J. Overman, and R. Pahwa, “Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures,” Neurology, vol. 63, no. 4, pp. 612–616, 2004. View at Google Scholar · View at Scopus
  21. J. Voges, R. Hilker, K. Bötzel et al., “Thirty days complication rate following surgery performed for deep-brain-stimulation,” Movement Disorders, vol. 22, no. 10, pp. 1486–1489, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. K. E. Novak, E. K. Nenonene, S. Vergenz et al., “Two cases of ischemia associated with subthalamic nucleus stimulator implantation for advanced Parkinson's disease,” Movement Disorders, vol. 21, no. 9, pp. 1477–1483, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. M. Owen, “Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry,” Neuroscientist, vol. 10, no. 6, pp. 525–537, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. I. Rektorova, H. Srovnalova, R. Kubikova, and J. Prasek, “Striatal dopamine transporter imaging correlates with depressive symptoms and Tower of London task performance in Parkinson's disease,” Movement Disorders, vol. 23, no. 11, pp. 1580–1587, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. I. Hariz and H. Fodstad, “Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature,” Stereotactic and Functional Neurosurgery, vol. 72, pp. 157–169, 1999. View at Google Scholar
  26. F. Ory-Magne, C. Brefel-Courbon, M. Simonetta-Moreau et al., “Does ageing influence deep brain stimulation outcomes in Parkinson's disease?” Movement Disorders, vol. 22, no. 10, pp. 1457–1463, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. T. D. Parsons, S. A. Rogers, A. J. Braaten, S. P. Woods, and A. I. Tröster, “Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson's disease: a meta-analysis,” Lancet Neurology, vol. 5, no. 7, pp. 578–588, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. H. M. M. Smeding, J. D. Speelman, M. Koning-Haanstra et al., “Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study,” Neurology, vol. 66, no. 12, pp. 1830–1836, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. V. Voon, C. Kubu, P. Krack, J. L. Houeto, and A. I. Tröster, “Deep brain stimulation: neuropsychological and neuropsychiatric issues,” Movement Disorders, vol. 21, no. 14, supplement 14, pp. S305–S327, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. Aybek, A. Gronchi-Perrin, A. Berney et al., “Long-term cognitive profile and incidence of dementia after STN-DBS in Parkinson's disease,” Movement Disorders, vol. 22, no. 7, pp. 974–981, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. Witt, C. Daniels, J. Reiff et al., “Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study,” The Lancet Neurology, vol. 7, no. 7, pp. 605–614, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Telecka, M. Balaz, I. Rektorova, Z. Fanfrdlova, and I. Rektor, “Rektor I one year after DBS in patients with Parkinson's disease,” Ceska a Slovenska Neurologie a Neurochirurgie, vol. 73, no. 1, pp. 57–61, 2010. View at Google Scholar
  33. A. P. Strafella, A. Dagher, and A. F. Sadikot, “Cerebral blood flow changes induced by subthalamic stimulation in Parkinson's disease,” Neurology, vol. 60, no. 6, pp. 1039–1042, 2003. View at Google Scholar · View at Scopus
  34. M. C. Campbell, M. Karimi, P. M. Weaver et al., “Neural correlates of STN DBS-induced cognitive variability in Parkinson disease,” Neuropsychologia, vol. 46, no. 13, pp. 3162–3169, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. A. Hely, W. G. J. Reid, M. A. Adena, G. M. Halliday, and J. G. L. Morris, “The Sydney Multicenter Study of Parkinson's disease: the inevitability of dementia at 20 years,” Movement Disorders, vol. 23, no. 6, pp. 837–844, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. D. Aarsland and M. W. Kurz, “The epidemiology of dementia associated with parkinson's disease,” Brain Pathology, vol. 20, no. 3, pp. 633–639, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. G. Halliday, M. Hely, W. Reid, and J. Morris, “The progression of pathology in longitudinally followed patients with Parkinson's disease,” Acta Neuropathologica, vol. 115, no. 4, pp. 409–415, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. Braak, U. Rüb, and K. Del Tredici, “Cognitive decline correlates with neuropathological stage in Parkinson's disease,” Journal of the Neurological Sciences, vol. 248, no. 1-2, pp. 255–258, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. Moss, T. Ryder, T. Z. Aziz, M. B. Graeber, and P. G. Bain, “Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson's disease,” Brain, vol. 127, no. 12, pp. 2755–2763, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. D. Aarsland, J. T. Kvaløy, K. Andersen et al., “The effect of age of onset of PD on risk of dementia,” Journal of Neurology, vol. 254, no. 1, pp. 38–45, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. E. Moro, N. Allert, R. Eleopra, J. L. Houeto, T. M. Phan, and H. Stoevelaar, “A decision tool to support appropriate referral for deep brain stimulation in Parkinson's disease,” Journal of Neurology, vol. 256, no. 1, pp. 83–88, 2009. View at Publisher · View at Google Scholar · View at PubMed