Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2012 (2012), Article ID 237673, 7 pages
http://dx.doi.org/10.1155/2012/237673
Research Article

Accuracy of Fall Prediction in Parkinson Disease: Six-Month and 12-Month Prospective Analyses

1Program in Physical Therapy, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA
2Department of Physical Therapy, University of New England, Portland, ME 04103, USA
3Department of Physical Therapy, University of Utah, Salt Lake City, UT 84108, USA
4Department of Physical Therapy and Athletic Training, Boston University, Boston, MA 02215, USA
5Department of Physical Therapy, University of Alabama at Birmingham School of Health Professions, Birmingham, AL 35294, USA
6Department of Anatomy & Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
7Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA

Received 26 July 2011; Revised 4 October 2011; Accepted 8 October 2011

Academic Editor: Alice Nieuwboer

Copyright © 2012 Ryan P. Duncan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rudzińska, S. Bukowczan, K. Banaszkiewicz, J. Stozek, K. Zajdel, and A. Szczudlik, “Causes and risk factors of falls in patients with Parkinson's disease,” Neurologia i Neurochirurgia Polska, vol. 42, no. 3, pp. 216–222, 2008. View at Google Scholar
  2. L. Z. Rubenstein and K. R. Josephson, “Falls and their prevention in elderly people: what does the evidence show?” Medical Clinics of North America, vol. 90, no. 5, pp. 807–824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. H. Wood, J. A. Bilclough, A. Bowron, and R. W. Walker, “Incidence and prediction of falls in Parkinson's disease: a prospective multidisciplinary study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 6, pp. 721–725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. A. M. Grimbergen, M. Munneke, and B. R. Bloem, “Falls in Parkinson's disease,” Current Opinion in Neurology, vol. 17, no. 4, pp. 405–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. K. Kerr, C. J. Worringham, M. H. Cole, P. F. Lacherez, J. M. Wood, and P. A. Silburn, “Predictors of future falls in Parkinson disease,” Neurology, vol. 75, no. 2, pp. 116–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. J. Melton, C. L. Leibson, S. J. Achenbach et al., “Fracture risk after the diagnosis of Parkinson's disease: influence of concomitant dementia,” Movement Disorders, vol. 21, no. 9, pp. 1361–1367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. B. R. Bloem, Y. A. M. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, “Prospective assessment of falls in Parkinson's disease,” Journal of Neurology, vol. 248, no. 11, pp. 950–958, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. L. Adkin, J. S. Frank, and M. S. Jog, “Fear of falling and postural control in Parkinson's disease,” Movement Disorders, vol. 18, no. 5, pp. 496–502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. H. Romero and G. E. Stelmach, “Changes in postural control with aging and Parkinson's disease,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 2, pp. 27–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. W. E. Bacon, “Secular trends in hip fracture occurrence and survival: age and sex differences,” Journal of Aging and Health, vol. 8, no. 4, pp. 538–553, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Stevens, P. S. Corso, E. A. Finkelstein, and T. R. Miller, “The costs of fatal and non-fatal falls among older adults,” Injury Prevention, vol. 12, no. 5, pp. 290–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. T. Chang and D. A. Ganz, “Quality indicators for falls and mobility problems in vulnerable elders,” Journal of the American Geriatrics Society, vol. 55, no. 2, pp. S327–S334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Pickering, Y. A. M. Grimbergen, U. Rigney et al., “A meta-analysis of six prospective studies of falling in Parkinson's disease,” Movement Disorders, vol. 22, no. 13, pp. 1892–1900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. B. Horak, D. Dimitrova, and J. G. Nutt, “Direction-specific postural instability in subjects with Parkinson's disease,” Experimental Neurology, vol. 193, no. 2, pp. 504–521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. E. Dibble, J. Christensen, D. J. Ballard, and K. B. Foreman, “Diagnosis of fall risk in Parkinson disease: an analysis of individual and collective clinical balance test interpretation,” Physical Therapy, vol. 88, no. 3, pp. 323–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. B. Foreman, O. Addison, H. S. Kim, and L. E. Dibble, “Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing,” Parkinsonism and Related Disorders, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. D. Latt, S. R. Lord, J. G. L. Morris, and V. S. C. Fung, “Clinical and physiological assessments for elucidating falls risk in Parkinson's disease,” Movement Disorders, vol. 24, no. 9, pp. 1280–1289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. E. Tinetti, “Performance-orientated assessment of mobility problems in elderly patients,” Journal of the American Geriatrics Society, vol. 34, no. 2, pp. 119–126, 1986. View at Google Scholar · View at Scopus
  19. K. Berg, S. Wood-Dauphinee, J. I. Williams, and D. Gayton, “Measuring balance in the elderly: preliminary development of an instrument,” Physiotherapy Canada, vol. 41, no. 6, pp. 304–311, 1989. View at Google Scholar · View at Scopus
  20. D. Podsiadlo and S. Richardson, “The timed “Up and Go”: a test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142–148, 1991. View at Google Scholar · View at Scopus
  21. D. M. Wrisley, G. F. Marchetti, D. K. Kuharsky, and S. L. Whitney, “Reliability, internal consistency, and validity of data obtained with the functional gait assessment,” Physical Therapy, vol. 84, no. 10, pp. 906–918, 2004. View at Google Scholar · View at Scopus
  22. F. B. Horak, D. M. Wrisley, and J. Frank, “The balance evaluation systems test (BESTest) to differentiate balance deficits,” Physical Therapy, vol. 89, no. 5, pp. 484–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with parkinson disease who fall,” Physical Therapy, vol. 91, no. 1, pp. 102–113, 2011. View at Publisher · View at Google Scholar
  24. F. Franchignoni, F. Horak, M. Godi, A. Nardone, and A. Giordano, “Using psychometric techniques to improve the balance evaluation systems test: the mini-bestest,” Journal of Rehabilitation Medicine, vol. 42, no. 4, pp. 323–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. L. E. Dibble and M. Lange, “Predicting falls in individuals with Parkinson disease: a reconsideration of clinical balance measures,” Journal of Neurologic Physical Therapy, vol. 30, no. 2, pp. 60–67, 2006. View at Google Scholar · View at Scopus
  26. M. R. Landers, A. Backlund, J. Davenport, J. Fortune, S. Schuerman, and P. Altenburger, “Postural instability in idiopathic parkinson's disease: discriminating fallers from nonfallers based on standardized clinical measures,” Journal of Neurologic Physical Therapy, vol. 32, no. 2, pp. 56–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. L. E. Dibble, J. T. Cavanaugh, G. M. Earhart, T. D. Ellis, M. P. Ford, and K. B. Foreman, “Charting the progression of disability in parkinson disease: study protocol for a prospective longitudinal cohort study,” BMC Neurology, vol. 10, article 110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. O. Berg, S. L. Wood-Dauphinee, J. I. Williams, and B. Maki, “Measuring balance in the elderly: validation of an instrument,” Canadian Journal of Public Health, vol. 83, no. 2, pp. S7–S11, 1992. View at Google Scholar · View at Scopus
  29. L. I. I. K. Lim, E. E. H. Van Wegen, C. J. T. De Goede et al., “Measuring gait and gait-related activities in Parkinson's patients own home environment: a reliability, responsiveness and feasibility study,” Parkinsonism and Related Disorders, vol. 11, no. 1, pp. 19–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Utility of the mini-BESTest, BESTest, and BESTest sections for balance assessments in individuals with Parkinson disease,” Journal of Neurologic Physical Therapy, vol. 35, no. 2, pp. 90–97, 2011. View at Publisher · View at Google Scholar
  31. C. G. Goetz, S. Fahn, P. Martinez-Martin et al., “Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan,” Movement Disorders, vol. 22, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. G. Goetz, B. C. Tilley, S. R. Shaftman et al., “Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results,” Movement Disorders, vol. 23, no. 15, pp. 2129–2170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. K. Akobeng, “Understanding diagnostic tests 3: receiver operating characteristic curves,” Acta Paediatrica, vol. 96, no. 5, pp. 644–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Deeks and D. G. Altman, “Diagnostic tests 4: likelihood ratios,” British Medical Journal, vol. 329, no. 7458, pp. 168–169, 2004. View at Google Scholar · View at Scopus
  35. M. Greiner, D. Pfeiffer, and R. D. Smith, “Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests,” Preventive Veterinary Medicine, vol. 45, no. 1-2, pp. 23–41, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Hintze, NCSS, NCSS, LLC, Kaysville, Utah, 2009.
  37. E. M. Cheng, S. Tonn, R. Swain-Eng, S. A. Factor, W. J. Weiner, and C. T. Bever, “Quality improvement in neurology: AAN Parkinson disease quality measures: report of the Quality Measurement and Reporting Subcommittee of the American Academy of Neurology,” Neurology, vol. 75, no. 22, pp. 2021–2027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. C. Dennison, J. V. Noorigian, K. M. Robinson et al., “Falling in Parkinson disease: identifying and prioritizing risk factors in recurrent fallers,” American Journal of Physical Medicine and Rehabilitation, vol. 86, no. 8, pp. 621–632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. R. Cummings, M. C. Nevitt, and S. Kidd, “Forgetting falls. The limited accuracy of recall of falls in the elderly,” Journal of the American Geriatrics Society, vol. 36, no. 7, pp. 613–616, 1988. View at Google Scholar · View at Scopus
  40. S. E. Lamb, E. C. Jørstad-Stein, K. Hauer, and C. Becker, “Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus,” Journal of the American Geriatrics Society, vol. 53, no. 9, pp. 1618–1622, 2005. View at Publisher · View at Google Scholar · View at Scopus