Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2012 (2012), Article ID 321406, 8 pages
Research Article

L-DOPA Uptake in Astrocytic Endfeet Enwrapping Blood Vessels in Rat Brain

1Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
2Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

Received 14 March 2012; Accepted 13 June 2012

Academic Editor: Heinz Reichmann

Copyright © 2012 M. Y. Inyushin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Astrocyte endfeet surround brain blood vessels and can play a role in the delivery of therapeutic drugs for Parkinson’s disease. However, there is no previous evidence of the presence of LAT transporter for L-DOPA in brain astrocytes except in culture. Using systemic L-DOPA administration and a combination of patch clamp, histochemistry and confocal microscopy we found that L-DOPA is accumulated mainly in astrocyte cell bodies, astrocytic endfeet surrounding blood vessels, and pericytes. In brain slices: (1) astrocytes were exposed to ASP+, a fluorescent monoamine analog of MPP+; (2) ASP+ taken up by astrocytes was colocalized with L-DOPA fluorescence in (3) glial somata and in the endfeet attached to blood vessels; (4) these astrocytes have an electrogenic transporter current elicited by ASP+, but intriguingly not by L-DOPA, suggesting a different pathway for monoamines and L-DOPA via astrocytic membrane. (5) The pattern of monoamine oxidase (MAO type B) allocation in pericytes and astrocytic endfeet was similar to that of L-DOPA accumulation. We conclude that astrocytes control L-DOPA uptake and metabolism and, therefore, may play a key role in regulating brain dopamine level during dopamine-associated diseases. These data also suggest that different transporter mechanisms may exist for monoamines and L-DOPA.