Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2012, Article ID 429524, 6 pages
http://dx.doi.org/10.1155/2012/429524
Review Article

Parkinson’s Disease and Autophagy

1Clinical and Experimental Neuroscience (NiCE-CIBERNED), School of Medicine, Jaume I University, 12071 Castelló de la Plana, Spain
2Department of Medicine, School of Health Sciences, Jaume I University, Campus Riu Sec, 12071 Castelló de la Plana, Spain
3Department of Neurology, Hospital General Universitari, 12071 Castelló de la Plana, Spain

Received 30 July 2012; Accepted 10 September 2012

Academic Editor: Mireia Niso Santano

Copyright © 2012 Ana María Sánchez-Pérez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Deter, P. Baudhuin, and C. De Duve, “Participation of lysosomes in cellular autophagy induced in rat liver by glucagon,” Journal of Cell Biology, vol. 35, no. 2, pp. C11–C16, 1967. View at Google Scholar · View at Scopus
  2. S. Mitra, A. S. Tsvetkov, and S. Finkbeiner, “Protein turnover and inclusion body formation,” Autophagy, vol. 5, no. 7, pp. 1037–1038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Klionsky, “Autophagy: from phenomenology to molecular understanding in less than a decade,” Nature Reviews Molecular Cell Biology, vol. 8, no. 11, pp. 931–937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Yamamoto and A. Simonsen, “The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration,” Neurobiology of Disease, vol. 43, no. 1, pp. 17–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. C. Rubinsztein, “The roles of intracellular protein-degradation pathways in neurodegeneration,” Nature, vol. 443, no. 7113, pp. 780–786, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Ross and M. A. Poirier, “Opinion: what is the role of protein aggregation in neurodegeneration?” Nature Reviews Molecular Cell Biology, vol. 6, pp. 891–898, 2005. View at Publisher · View at Google Scholar
  10. P. T. Lansbury and H. A. Lashuel, “A century-old debate on protein aggregation and neurodegeneration enters the clinic,” Nature, vol. 443, no. 7113, pp. 774–779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Xie and D. J. Klionsky, “Autophagosome formation: core machinery and adaptations,” Nature Cell Biology, vol. 9, no. 10, pp. 1102–1109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation,” Nature Cell Biology, vol. 11, no. 12, pp. 1433–1437, 2009. View at Google Scholar · View at Scopus
  13. A. Kuma, M. Hatano, M. Matsui et al., “The role of autophagy during the early neonatal starvation period,” Nature, vol. 432, no. 7020, pp. 1032–1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Mijaljica, M. Prescott, and R. J. Devenish, “V-ATPase engagement in autophagic processes,” Autophagy, vol. 7, no. 6, pp. 666–668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Sahu, S. Kaushik, C. C. Clement et al., “Microautophagy of cytosolic proteins by late endosomes,” Developmental Cell, vol. 20, no. 1, pp. 131–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Li, Q. Yang, and Z. Mao, “Chaperone-mediated autophagy: machinery, regulation and biological consequences,” Cellular and Molecular Life Sciences, vol. 68, pp. 749–763, 2011. View at Publisher · View at Google Scholar
  17. A. Massey, R. Kiffin, and A. M. Cuervo, “Pathophysiology of chaperone-mediated autophagy,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 12, pp. 2420–2434, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ciechanover, “The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting,” Neurology, vol. 66, pp. S7–S19, 2006. View at Google Scholar · View at Scopus
  19. A. Varshavsky, “The ubiquitin system,” Trends in Biochemical Sciences, vol. 22, no. 10, pp. 383–387, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. L. G. Verhoef, K. Lindsten, M. G. Masucci, and N. P. Dantuma, “Aggregate formation inhibits proteasomal degradation of polyglutamine proteins,” Human Molecular Genetics, vol. 11, no. 22, pp. 2689–2700, 2002. View at Google Scholar · View at Scopus
  21. H. J. Rideout, I. Lang-Rollin, and L. Stefanis, “Involvement of macroautophagy in the dissolution of neuronal inclusions,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 12, pp. 2551–2562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Berger, H. Roder, A. Hanna et al., “Accumulation of pathological tau species and memory loss in a conditional model of tauopathy,” Journal of Neuroscience, vol. 27, no. 14, pp. 3650–3662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. S. P. McNaught, D. P. Perl, A. L. Brownell, and C. W. Olanow, “Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease,” Annals of Neurology, vol. 56, no. 1, pp. 149–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. S. P. McNaught, R. Belizaire, O. Isacson, P. Jenner, and C. W. Olanow, “Altered proteasomal function in sporadic Parkinson's disease,” Experimental Neurology, vol. 179, no. 1, pp. 38–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Seo, K. C. Sonntag, and O. Isacson, “Generalized brain and skin proteasome inhibition in Huntington's disease,” Annals of Neurology, vol. 56, no. 3, pp. 319–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Shimura, N. Hattori, S. I. Kubo et al., “Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase,” Nature Genetics, vol. 25, no. 3, pp. 302–305, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, “α-synuclein is degraded by both autophagy and the proteasome,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 25009–25013, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Ravikumar, R. Duden, and D. C. Rubinsztein, “Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy,” Human Molecular Genetics, vol. 11, no. 9, pp. 1107–1117, 2002. View at Google Scholar · View at Scopus
  29. M. Shibata, T. Lu, T. Furuya et al., “Regulation of intracellular accumulation of mutant huntingtin by beclin 1,” Journal of Biological Chemistry, vol. 281, no. 20, pp. 14474–14485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Spencer, R. Potkar, M. Trejo et al., “Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases,” Journal of Neuroscience, vol. 29, no. 43, pp. 13578–13588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. R. Winslow, C. W. Chen, S. Corrochano et al., “α-synuclein impairs macroautophagy: implications for Parkinson's disease,” Journal of Cell Biology, vol. 190, no. 6, pp. 1023–1037, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Irrcher, H. Aleyasin, E. L. Seifert et al., “Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics,” Human Molecular Genetics, vol. 19, no. 19, Article ID ddq288, pp. 3734–3746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. D. Plowey, S. J. Cherra, Y. J. Liu, and C. T. Chu, “Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells,” Journal of Neurochemistry, vol. 105, no. 3, pp. 1048–1056, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Anglade, S. Vyas, F. Javoy-Agid et al., “Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease,” Histology and Histopathology, vol. 12, pp. 25–31, 1997. View at Google Scholar
  35. C. Gómez-Santos, I. Ferrer, A. F. Santidrián, M. Barrachina, J. Gil, and S. Ambrosio, “Dopamine induces autophagic cell death and α-synuclein increase in human neuroblastoma SH-SY5Y cells,” Journal of Neuroscience Research, vol. 73, no. 3, pp. 341–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Y. Chu, Y. L. Liu, H. C. Chiu, and S. H. Jee, “Dopamine-induced apoptosis in human melanocytes involves generation of reactive oxygen species,” British Journal of Dermatology, vol. 154, no. 6, pp. 1071–1079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Cuervo, L. Stafanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, “Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy,” Science, vol. 305, no. 5688, pp. 1292–1295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Liu, N. Yamada, W. Maruyama, and T. Osawa, “Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease,” Journal of Biological Chemistry, vol. 283, no. 50, pp. 34887–34895, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Martinez-Vicente, Z. Talloczy, S. Kaushik et al., “Dopamine-modified α-synuclein blocks chaperone-mediated autophagy,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 777–778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Q. Yang, H. She, M. Gearing et al., “Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy,” Science, vol. 323, no. 5910, pp. 124–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. P. D. Smith, M. P. Mount, R. Shree et al., “Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2,” Journal of Neuroscience, vol. 26, no. 2, pp. 440–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. D. T. Dexter, C. J. Carter, F. R. Wells et al., “Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease,” Journal of Neurochemistry, vol. 52, no. 2, pp. 381–389, 1989. View at Google Scholar · View at Scopus
  43. P. Riederer, E. Sofic, W. D. Rausch et al., “Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains,” Journal of Neurochemistry, vol. 52, no. 2, pp. 515–520, 1989. View at Google Scholar · View at Scopus
  44. E. Sofic, A. Sapcanin, I. Tahirovic et al., “Antioxidant capacity in postmortem brain tissues of Parkinson's and Alzheimer's diseases,” Journal of Neural Transmission, Supplement, no. 71, pp. 39–43, 2006. View at Google Scholar · View at Scopus
  45. R. J. Castellani, G. Perry, S. L. Siedlak et al., “Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans,” Neuroscience Letters, vol. 319, no. 1, pp. 25–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. L. M. Sayre, D. A. Zelasko, P. L. R. Harris, G. Perry, R. G. Salomon, and M. A. Smith, “4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease,” Journal of Neurochemistry, vol. 68, no. 5, pp. 2092–2097, 1997. View at Google Scholar · View at Scopus
  47. E. Dalfó and I. Ferrer, “Early α-synuclein lipoxidation in neocortex in Lewy body diseases,” Neurobiology of Aging, vol. 29, no. 3, pp. 408–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. A. Malkus, E. Tsika, and H. Ischiropoulos, “Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle,” Molecular Neurodegeneration, vol. 4, no. 1, article 24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Takahashi, H. Yamashita, T. Nakamura, Y. Nagano, and S. Nakamura, “Tyrosine 125 of α-synuclein plays a critical role for dimerization following nitrative stress,” Brain Research, vol. 938, no. 1-2, pp. 73–80, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Paxinou, Q. Chen, M. Weisse et al., “Induction of α-synuclein aggregation by intracellular nitrative insult,” Journal of Neuroscience, vol. 21, no. 20, pp. 8053–8061, 2001. View at Google Scholar · View at Scopus
  51. D. Yao, Z. Gu, T. Nakamura et al., “Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10810–10814, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. D. P. Narendra, L. A. Kane, D. N. Hauser, I. M. Fearnley, and R. J. Youle, “p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both,” Autophagy, vol. 6, no. 8, pp. 1090–1106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Geisler, K. M. Holmström, D. Skujat et al., “PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology, vol. 12, no. 2, pp. 119–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. C. A. Gautier, T. Kitada, and J. Shen, “Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11364–11369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. L. Wang, A. H. Chou, A. S. Wu et al., “PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons,” Biochimica et Biophysica Acta, vol. 1812, no. 6, pp. 674–684, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and P. Ghafourifar, “Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 2015–2024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani, and H. K. Anandatheerthavarada, “Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain,” Journal of Biological Chemistry, vol. 283, no. 14, pp. 9089–9100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. S. J. Chinta, J. K. Mallajosyula, A. Rane, and J. K. Andersen, “Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo,” Neuroscience Letters, vol. 486, no. 3, pp. 235–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Bender, K. J. Krishnan, C. M. Morris et al., “High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease,” Nature Genetics, vol. 38, no. 5, pp. 515–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. I. Ekstrand, M. Terzioglu, D. Galter et al., “Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 4, pp. 1325–1330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. C. R. Arthur, S. L. Morton, L. D. Dunham, P. M. Keeney, and J. P. Bennett, “Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance,” Molecular Neurodegeneration, vol. 4, no. 1, article 37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13843–13855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Alegre-Abarrategui, H. Christian, M. M. P. Lufino et al., “LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model,” Human Molecular Genetics, vol. 18, no. 21, pp. 4022–4034, 2009. View at Publisher · View at Google Scholar · View at Scopus