Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2013, Article ID 912037, 8 pages
http://dx.doi.org/10.1155/2013/912037
Clinical Study

Predictors of Cognitive Decline in the Early Stages of Parkinson's Disease: A Brief Cognitive Assessment Longitudinal Study

1Neurology Department, Hospital de Egas Moniz, CHLO, Rua da Junqueira 126, 1349-019 Lisbon, Portugal
2CEDOC and Neurology Department, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa (UNL), Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal

Received 4 June 2013; Revised 9 September 2013; Accepted 13 September 2013

Academic Editor: P. Martinez Martin

Copyright © 2013 Paulo Bugalho and Miguel Viana-Baptista. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Gelb, E. Oliver, and S. Gilman, “Diagnostic criteria for Parkinson's disease,” Archives of Neurology, vol. 56, no. 1, pp. 33–39, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. K. R. Chaudhuri, D. G. Healy, and A. H. V. Schapira, “Non-motor symptoms of Parkinson's disease: diagnosis and management,” The Lancet Neurology, vol. 5, no. 3, pp. 235–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Hely, W. G. J. Reid, M. A. Adena, G. M. Halliday, and J. G. L. Morris, “The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years,” Movement Disorders, vol. 23, no. 6, pp. 837–844, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Emre, D. Aarsland, A. Albanese et al., “Rivastigmine for dementia associated with Parkinson's disease,” The New England Journal of Medicine, vol. 351, no. 24, pp. 2509–2518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Erro, C. Vitale, M. Amboni et al., “The heterogeneity of early Parkinson’s disease: a cluster analysis on newly diagnosed untreated patients,” PLoS ONE, vol. 8, no. 8, Article ID e70244, 2013. View at Publisher · View at Google Scholar
  6. S. J. G. Lewis, T. Foltynie, A. D. Blackwell, T. W. Bobbins, A. M. Owen, and R. A. Barker, “Heterogeneity of Parkinson's disease in the early clinical stages using a data driven approach,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 3, pp. 343–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Bugalho and J. Vale, “Brief cognitive assessment in the early stages of parkinson disease,” Cognitive and Behavioral Neurology, vol. 24, no. 4, pp. 169–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, vol. 17, no. 5, pp. 427–442, 1967. View at Google Scholar · View at Scopus
  9. S. Fahn, R. L. Elton, and Members of the UPDRS Development Committee, “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S. Fahn, C. D. Marsden, D. B. Calne, and M. Goldstein, Eds., pp. 153–163, Macmollan Health Care Information, Florham Park, NJ, USA, 1987. View at Google Scholar
  10. J. Jankovic, M. McDermott, J. Carter et al., “Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort,” Neurology, vol. 40, no. 10, pp. 1529–1534, 1990. View at Google Scholar · View at Scopus
  11. S. G. Parkin, R. P. Gregory, R. Scott et al., “Unilateral and bilateral pallidotomy for idiopathic Parkinson's disease: a case series of 115 patients,” Movement Disorders, vol. 17, no. 4, pp. 682–692, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Folstein, S. Folstein, and P. McHugh, ““Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Google Scholar
  13. E. Mamikonyan, P. J. Moberg, A. Siderowf et al., “Mild cognitive impairment is common in Parkinson's disease patients with normal mini-mental state examination (MMSE) scores,” Parkinsonism and Related Disorders, vol. 15, no. 3, pp. 226–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Riedel, J. Klotsche, A. Spottke et al., “Cognitive impairment in 873 patients with idiopathic Parkinson's disease: results from the German Study on epidemiology of Parkinson's disease with dementia (GEPAD),” Journal of Neurology, vol. 255, no. 2, pp. 255–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Nazem, A. D. Siderowf, J. E. Duda et al., “Montreal cognitive assessment performance in patients with Parkinson's disease with “normal” global cognition according to mini-mental state examination score,” Journal of the American Geriatrics Society, vol. 57, no. 2, pp. 304–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Kandiah, K. Narasimhalu, P.-N. Lau, S.-H. Seah, W. L. Au, and L. C. S. Tan, “Cognitive decline in early Parkinson's disease,” Movement Disorders, vol. 24, no. 4, pp. 605–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Liepelt, M. Reimold, W. Maetzler et al., “Cortical hypometabolism assessed by a metabolic ratio in Parkinson's disease primarily reflects cognitive deterioration—[18F]FDG-PET,” Movement Disorders, vol. 24, no. 10, pp. 1504–1511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. N. Williams, P. Seignourel, G. P. Crucian et al., “Laterality, region, and type of motor dysfunction correlate with cognitive impairment in Parkinson's disease,” Movement Disorders, vol. 22, no. 1, pp. 141–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Y. Oh, Y.-S. Kim, B. H. Choi, E. H. Sohn, and A. Y. Lee, “Relationship between clinical phenotypes and cognitive impairment in Parkinson's disease (PD),” Archives of Gerontology and Geriatrics, vol. 49, no. 3, pp. 351–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. F. Gago, M. C. Garrett, M. R. Fonseca et al., “How do cognitive and axial motor signs correlate in Parkinson's disease? A 6-year prospective study,” Journal of Neurology, vol. 256, no. 10, pp. 1655–1662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Braak, U. Rüb, and K. del Tredici, “Cognitive decline correlates with neuropathological stage in Parkinson's disease,” Journal of the Neurological Sciences, vol. 248, no. 1-2, pp. 255–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Dubois, D. Burn, C. Goetz et al., “Diagnostic procedures for Parkinson's disease dementia: recommendations from the movement disorder society task force,” Movement Disorders, vol. 22, no. 16, pp. 2314–2324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Dubois, E. Tolosa, R. Katzenschlager et al., “Donepezil in Parkinson's disease dementia: a randomized, double-blind efficacy and safety study,” Movement Disorders, vol. 27, no. 10, pp. 1230–1238, 2012. View at Publisher · View at Google Scholar
  24. B. Dubois, A. Slachevsky, I. Litvan, and B. Pillon, “The FAB: a frontal assessment battery at bedside,” Neurology, vol. 55, no. 11, pp. 1621–1626, 2000. View at Google Scholar · View at Scopus
  25. G. Kenangil, D. N. Orken, E. Ur, and H. Forta, “Frontal assessment battery in patients with Parkinson disease in a Turkish population,” Cognitive and Behavioral Neurology, vol. 23, no. 1, pp. 26–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Takagi, Y. Kajimoto, S. Kamiyoshi, H. Miwa, and T. Kondo, “The frontal assessment battery at bedside (FAB) in patients with Parkinson's disease,” No To Shinkei, vol. 54, no. 10, pp. 897–902, 2002. View at Google Scholar · View at Scopus
  27. E. Guedj, G. Allali, C. Goetz et al., “Frontal assessment battery is a marker of dorsolateral and medial frontal functions: a SPECT study in frontotemporal dementia,” Journal of the Neurological Sciences, vol. 273, no. 1-2, pp. 84–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Morgado, C. S. Rocha, C. Maruta, M. Guerreiro, and I. P. Martins, “Novos valores Normativos do mini-mental state examination,” Sinapse, vol. 9, no. 2, pp. 10–16, 2009. View at Google Scholar · View at Scopus
  29. C. F. Lima, L. P. Meireles, R. Fonseca, S. L. Castro, and C. Garrett, “The frontal assessment battery (FAB) in Parkinson's disease and correlations with formal measures of executive functioning,” Journal of Neurology, vol. 255, no. 11, pp. 1756–1761, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Iavarone, B. Ronga, L. Pellegrino et al., “The frontal assessment battery (FAB): normative data from an Italian sample and performances of patients with Alzheimer's disease and frontotemporal dementia,” Functional Neurology, vol. 19, no. 3, pp. 191–195, 2004. View at Google Scholar · View at Scopus
  31. T. H. Kim, Y. Huh, J. Y. Choe et al., “Korean version of frontal assessment battery: psychometric properties and normative data,” Dementia and Geriatric Cognitive Disorders, vol. 29, no. 4, pp. 363–370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Siderowf, M. McDermott, K. Kieburtz, K. Blindauer, S. Plumb, and I. Shoulson, “Test-retest reliability of the unified Parkinson's disease rating scale in patients with early Parkinson's disease: results from a multicenter clinical trial,” Movement Disorders, vol. 17, no. 4, pp. 758–763, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. M. P. McDermott, J. Jankovic, J. Carter et al., “Factors predictive of the need for levodopa therapy in early, untreated Parkinson's disease. The Parkinson Study Group,” Archives of Neurology, vol. 52, no. 6, pp. 565–570, 1995. View at Google Scholar · View at Scopus
  34. O. Spreen and E. Strauss, A Compendium of Neuropsychological Tests: Administration, Norms and Commentary, Oxford University press, New York, NY, USA, 1998.
  35. D. Aarsland, K. Andersen, J. P. Larsen et al., “The rate of cognitive decline in Parkinson disease,” Archives of Neurology, vol. 61, no. 12, pp. 1906–1911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorder, American Psychological Association, Washington, DC, USA, 4th edition, 1994.
  37. N. Kandiah, K. Narasimhalu, P.-N. Lau, S.-H. Seah, W. L. Au, and L. C. S. Tan, “Cognitive decline in early Parkinson's disease,” Movement Disorders, vol. 24, no. 4, pp. 605–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Aarsland, G. Muniz, and F. Matthews, “Nonlinear decline of mini-mental state examination in Parkinson's disease,” Movement Disorders, vol. 26, no. 2, pp. 334–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. C. H. Williams-Gray, J. R. Evans, A. Goris et al., “The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort,” Brain, vol. 132, no. 11, pp. 2958–2969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Lessig, D. Nie, R. Xu et al., “Changes on brief cognitive instruments over time in Parkinson's disease,” Movement Disorders, vol. 27, no. 9, pp. 1125–1128, 2012. View at Google Scholar
  41. T. Azuma, R. F. Cruz, K. A. Bayles, C. K. Tomoeda, and E. B. Montgomery Jr., “A longitudinal study of neuropsychological change in individuals with Parkinson's disease,” International Journal of Geriatric Psychiatry, vol. 18, no. 12, pp. 1115–1120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Levy, M.-X. Tang, L. J. Cote et al., “Motor impairment in PD: relationship to incident dementia and age,” Neurology, vol. 55, no. 4, pp. 539–544, 2000. View at Google Scholar · View at Scopus
  43. D. Aarsland, K. Andersen, J. P. Larsen, A. Lolk, H. Nielsen, and P. Kragh-Sørensen, “Risk of dementia in Parkinson's disease: a community-based, prospective study,” Neurology, vol. 56, no. 6, pp. 730–736, 2001. View at Google Scholar · View at Scopus
  44. C. H. Williams-Gray, T. Foltynie, C. E. G. Brayne, T. W. Robbins, and R. A. Barker, “Evolution of cognitive dysfunction in an incident Parkinson's disease cohort,” Brain, vol. 130, no. 7, pp. 1787–1798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Y. Uc, M. P. McDermott, K. S. Marder et al., “Incidence of and risk factors for cognitive impairment in an early parkinson disease clinical trial cohort,” Neurology, vol. 73, no. 18, pp. 1469–1477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Fénelon, F. Mahieux, R. Huon, and M. Ziégler, “Hallucinations in Parkinson's disease. Prevalence, phenomenology and risk factors,” Brain, vol. 123, no. 4, pp. 733–745, 2000. View at Google Scholar · View at Scopus
  47. N. Ibarretxe-Bilbao, B. Ramirez-Ruiz, C. Junque et al., “Differential progression of brain atrophy in Parkinson's disease with and without visual hallucinations,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 6, pp. 650–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Alves, J. P. Larsen, M. Emre, T. Wentzel-Larsen, and D. Aarsland, “Changes in motor subtype and risk for incident dementia in Parkinson's disease,” Movement Disorders, vol. 21, no. 8, pp. 1123–1130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Pagonabarraga, J. Kulisevsky, G. Llebaria, C. García-Sánchez, B. Pascual-Sedano, and A. Gironell, “Parkinson's disease-cognitive rating scale: a new cognitive scale specific for Parkinson's disease,” Movement Disorders, vol. 23, no. 7, pp. 998–1005, 2008. View at Publisher · View at Google Scholar · View at Scopus