Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2014 (2014), Article ID 848035, 8 pages
http://dx.doi.org/10.1155/2014/848035
Research Article

Quantitative Electromyographic Analysis of Reaction Time to External Auditory Stimuli in Drug-Naïve Parkinson’s Disease

1Department of Neurology, Korea University College of Medicine, Ansan Hospital, 516 Gojan-1-dong, Danwon-gu, Ansan-city, Gyeonggi-do 425-707, Republic of Korea
2Department of Physical Medicine & Rehabilitation, Korea University College of Medicine, Ansan Hospital, 516 Gojan-1-dong, Danwon-gu, Ansan-city, Gyeonggi-do 425-707, Republic of Korea
3School of Biomedical Engineering, Konkuk University, Seoul, Republic of Korea
4Department of Control and Instrumentation Engineering, Korea University, Seoul, Republic of Korea

Received 27 November 2013; Accepted 9 January 2014; Published 2 March 2014

Academic Editor: Tan E. King

Copyright © 2014 Do-Young Kwon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Wichmann, M. R. Delong, J. Guridi, and J. A. Obeso, “Milestones in research on the pathophysiology of Parkinson's disease,” Movement Disorders, vol. 26, no. 6, pp. 1032–1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Müller, E. Eising, W. Kuhn, T. Büttner, H.-H. Coenen, and H. Przuntek, “Delayed motor response correlates with striatal degeneration in Parkinson's disease,” Acta Neurologica Scandinavica, vol. 100, no. 4, pp. 227–230, 1999. View at Google Scholar · View at Scopus
  3. E. L. Berry, R. I. Nicolson, J. K. Foster, M. Behrmann, and H. J. Sagar, “Slowing of reaction time in Parkinsons disease: the involvement of the frontal lobes,” Neuropsychologia, vol. 37, no. 7, pp. 787–795, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Bruhn and O. A. Parsons, “Reaction time variability in epileptic and brain-damaged patients,” Cortex, vol. 13, no. 4, pp. 373–384, 1977. View at Google Scholar · View at Scopus
  5. J. Gauntlett-Gilbert and V. J. Brown, “Reaction time deficits and Parkinson's disease,” Neuroscience and Biobehavioral Reviews, vol. 22, no. 6, pp. 865–881, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Gordon and K. Carson, “The basis for choice reaction time slowing in Alzheimer's disease,” Brain and Cognition, vol. 13, no. 2, pp. 148–166, 1990. View at Google Scholar · View at Scopus
  7. M. Jahanshahi, R. G. Brown, and C. D. Marsden, “A comparative study of simple and choice reaction time in Parkinson's, Huntington's and cerebellar disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 56, no. 11, pp. 1169–1177, 1993. View at Google Scholar · View at Scopus
  8. A. D. Turhanoǧlu and M. Beyazova, “Reaction time and movement time in patients with carpal tunnel syndrome: an electromyographic study,” Clinical Biomechanics, vol. 18, no. 5, pp. 380–384, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. C. L. Byung Kyu Park, Y. B. Shin, and D. K. Jung, “Assessment of motor recovery after stroke by EMG analysis of motor reaction,” Journal of the Korean Association EMG-Electrodiagnostic Medicine, vol. 6, pp. 38–44, 2004. View at Google Scholar
  10. J. Chae, G. Yang, B. K. Park, and I. Labatia, “Delay in initiation and termination of muscle contraction, motor impairment, and physical disability in upper limb hemiparesis,” Muscle and Nerve, vol. 25, no. 4, pp. 568–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Akamatsu, H. Fukuyama, and T. Kawamata, “The effects of visual, auditory, and mixed cues on choice reaction in Parkinson's disease,” Journal of the Neurological Sciences, vol. 269, no. 1-2, pp. 118–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Camicioli, M. Wieler, C. M. de Frias, and W. R. W. Martin, “Early, untreated Parkinson's disease patients show reaction time variability,” Neuroscience Letters, vol. 441, no. 1, pp. 77–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Giovannoni, J. Van Schalkwyk, V. U. Fritz, and A. J. Lees, “Bradykinesia akinesia inco-ordination test (BRAIN TEST): an objective computerised assessment of upper limb motor function,” Journal of Neurology Neurosurgery and Psychiatry, vol. 67, no. 5, pp. 624–629, 1999. View at Google Scholar · View at Scopus
  14. N. Jordan, H. J. Sagar, and J. A. Cooper, “Cognitive components of reaction time in Parkinson's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 55, no. 8, pp. 658–664, 1992. View at Google Scholar · View at Scopus
  15. T. Tsujimoto, H. Gemba, and K. Sasaki, “Effect of cooling the dentate nucleus of the cerebellum on hand movement of the monkey,” Brain Research, vol. 629, no. 1, pp. 1–9, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. K. R. Chaudhuri, D. G. Healy, and A. H. V. Schapira, “Non-motor symptoms of Parkinson's disease: diagnosis and management,” The Lancet Neurology, vol. 5, no. 3, pp. 235–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. R. Chaudhuri, L. Yates, and P. Martinez-Martin, “The non-motor symptom complex of Parkinson's disease: a comprehensive assessment is essential,” Current Neurology and Neuroscience Reports, vol. 5, no. 4, pp. 275–283, 2005. View at Google Scholar · View at Scopus
  18. J. Jankovic, “Parkinson's disease: clinical features and diagnosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 4, pp. 368–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, “Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases,” Journal of Neurology Neurosurgery and Psychiatry, vol. 55, no. 3, pp. 181–184, 1992. View at Google Scholar · View at Scopus
  20. O. Rascol, C. Goetz, W. Koller, W. Poewe, and C. Sampaio, “Treatment interventions for Parkinson's disease: an evidence based assessment,” The Lancet, vol. 359, no. 9317, pp. 1589–1598, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. E. R. Fahn, Unified Parkinson's Disease Rating Scale, Macmillan, New York, NY, USA, 1987.
  22. M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, vol. 17, no. 5, pp. 427–442, 1967. View at Google Scholar · View at Scopus
  23. Y. W. Kang, “Samsung neuropsychological screening battery,” in Current Research in Dementia, pp. 99–107, The Korean Dementia Association, Seoul, Republic of Korea, 1998. View at Google Scholar
  24. J. Chae, A. Quinn, K. El-Hayek, J. Santing, R. Berezovski, and M. Harley, “Delay in initiation and termination of tibialis anterior contraction in lower-limb hemiparesis: relationship to lower-limb motor impairment and mobility,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 9, pp. 1230–1234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Essentials of Neural Science and Behavior, Appelton and Lange, 1995.
  26. A. Berardelli, J. C. Rothwell, P. D. Thompson, and M. Hallett, “Pathophysiology of bradykinesia in parkinson's disease,” Brain, vol. 124, no. 11, pp. 2131–2146, 2001. View at Google Scholar · View at Scopus
  27. J. A. Obeso, M. C. Rodriguez-Oroz, M. Rodriguez et al., “Pathophysiology of the basal ganglia in Parkinson's disease,” Trends in Neurosciences, vol. 23, no. 10, pp. S8–S19, 2000. View at Google Scholar · View at Scopus
  28. J. G. F. Vingerhoets, M. Schulzer, D. B. Calne, and B. J. Snow, “Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion?” Annals of Neurology, vol. 41, no. 1, pp. 58–64, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Müller, S. Benz, and C. Börnke, “Delay of simple reaction time after levodopa intake,” Clinical Neurophysiology, vol. 112, no. 11, pp. 2133–2137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Müller, S. Benz, and H. Przuntek, “Choice reaction time after levodopa challenge in parkinsonian patients,” Journal of the Neurological Sciences, vol. 181, no. 1-2, pp. 98–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Yanagisawa, S. Fujimoto, and F. Tamaru, “Bradykinesia in Parkinson's disease: disorders of onset and execution of fast movement,” European Neurology, vol. 29, supplement 1, pp. 19–28, 1989. View at Google Scholar · View at Scopus
  32. M. Hallett and S. Khoshbin, “A physiological mechanism of bradykinesia,” Brain, vol. 103, no. 2, pp. 301–314, 1980. View at Google Scholar · View at Scopus
  33. G. Deuschl, J. Raethjen, R. Baron, M. Lindemann, H. Wilms, and P. Krack, “The pathophysiology of parkinsonian tremor: a review,” Journal of Neurology, vol. 247, supplement 5, pp. V33–V48, 2000. View at Google Scholar · View at Scopus
  34. R. J. Elble, “Tremor and dopamine agonists,” Neurology, vol. 58, no. 4, pp. S57–S62, 2002. View at Google Scholar · View at Scopus
  35. P. Santens, P. Boon, D. Van Roost, and J. Caemaert, “The pathophysiology of motor symptoms in Parkinson's disease,” Acta Neurologica Belgica, vol. 103, no. 3, pp. 129–134, 2003. View at Google Scholar · View at Scopus
  36. R. J. Meara, “Review: the pathophysiology of the motor signs in Parkinson's disease,” Age and Ageing, vol. 23, no. 4, pp. 342–346, 1994. View at Google Scholar · View at Scopus
  37. V. Dietz, J. Quintern, and W. Berger, “Electrophysiological studies of gait in spasticity and rigidity: evidence that altered mechanical properties of muscle contribute to hypertonia,” Brain, vol. 104, no. 3, pp. 431–449, 1981. View at Google Scholar · View at Scopus
  38. P. J. Delwaide, J. L. Pepin, and A. M. de Noordhout, “The audiospinal reaction in parkinsonian patients reflects functional changes in reticular nuclei,” Annals of Neurology, vol. 33, no. 1, pp. 63–69, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Ballanger, P. Baraduc, E. Broussolle, D. L. Bars, M. Desmurget, and S. Thobois, “Motor urgency is mediated by the contralateral cerebellum in Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 10, pp. 1110–1116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. B. Daroff, “Paradoxical kinesia,” Movement Disorders, vol. 23, no. 8, p. 1193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Ballanger, S. Thobois, P. Baraduc, R. S. Turner, E. Broussolle, and M. Desmurget, “‘Paradoxial kinesis’ is not a hallmark of Parkinson's disease but a general property of the motor system,” Movement Disorders, vol. 21, no. 9, pp. 1490–1495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. I. N. Krylov, “Possible mechanisms of delay in initiation of voluntary movements,” Neuroscience and Behavioral Physiology, vol. 28, no. 4, pp. 402–408, 1998. View at Google Scholar · View at Scopus
  43. Y.-H. Hsieh, K.-J. Chen, C.-C. Wang, and C.-L. Lai, “Cognitive and motor components of response speed in the Stroop test in Parkinson's disease patients,” Kaohsiung Journal of Medical Sciences, vol. 24, no. 4, pp. 197–203, 2008. View at Google Scholar · View at Scopus
  44. A. Revonsuo, R. Portin, L. Koivikko, J. O. Rinne, and U. K. Rinne, “Slowing of information processing in Parkinson's disease,” Brain and Cognition, vol. 21, no. 1, pp. 87–110, 1993. View at Publisher · View at Google Scholar · View at Scopus