Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2016, Article ID 8704910, 10 pages
http://dx.doi.org/10.1155/2016/8704910
Research Article

Using Tractography to Distinguish SWEDD from Parkinson’s Disease Patients Based on Connectivity

1Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
2School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
3Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Suwon 16419, Republic of Korea

Received 28 October 2015; Revised 3 February 2016; Accepted 10 February 2016

Academic Editor: Carlo Colosimo

Copyright © 2016 Mansu Kim and Hyunjin Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Obeso, M. C. Rodríguez-Oroz, B. Benitez-Temino et al., “Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease,” Movement Disorders, vol. 23, supplement 3, pp. S548–S559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Stoessl, “Neuroimaging in Parkinson's disease,” Neurotherapeutics, vol. 8, no. 1, pp. 72–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Litvan, K. P. Bhatia, D. J. Burn et al., “SIC task force appraisal of clinical diagnostic criteria for parkinsonian disorders,” Movement Disorders, vol. 18, no. 5, pp. 467–486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Schneider, M. J. Edwards, P. Mir et al., “Patients with adult-onset dystonic tremor resembling Parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs),” Movement Disorders, vol. 22, no. 15, pp. 2210–2215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Batla, R. Erro, M. Stamelou et al., “Patients with scans without evidence of dopaminergic deficit: a long-term follow-up study,” Movement Disorders, vol. 29, no. 14, pp. 1820–1825, 2014. View at Publisher · View at Google Scholar
  6. G. Gattellaro, L. Minati, M. Grisoli et al., “White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study,” American Journal of Neuroradiology, vol. 30, no. 6, pp. 1222–1226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Zhang, C. Yu, Y. Zhang et al., “Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease,” European Journal of Radiology, vol. 77, no. 2, pp. 269–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Yoshikawa, Y. Nakata, K. Yamada, and M. Nakagawa, “Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 75, no. 3, pp. 481–484, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Hagmann, J.-P. Thiran, L. Jonasson et al., “DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection,” NeuroImage, vol. 19, no. 3, pp. 545–554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Descoteaux, R. Deriche, T. R. Knösche, and A. Anwander, “Deterministic and probabilistic tractography based on complex fibre orientation distributions,” IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 269–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Smith, “The future of FMRI connectivity,” NeuroImage, vol. 62, no. 2, pp. 1257–1266, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Desikan, F. Ségonne, B. Fischl et al., “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest,” NeuroImage, vol. 31, no. 3, pp. 968–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Wu, L. Wang, Y. Chen, C. Zhao, K. Li, and P. Chan, “Changes of functional connectivity of the motor network in the resting state in Parkinson's disease,” Neuroscience Letters, vol. 460, no. 1, pp. 6–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. Ellis, G. Lemmens, S. C. R. Williams et al., “Changes in putamen N-acetylaspartate and choline ratios in untreated and levodopa-treated Parkinson's disease: a proton magnetic resonance spectroscopy study,” Neurology, vol. 49, no. 2, pp. 438–444, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Tedeschi, I. Litvan, S. Bonavita et al., “Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson's disease and corticobasal degeneration,” Brain, vol. 120, no. 9, pp. 1541–1552, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Marek, D. Jennings, S. Lasch et al., “The Parkinson Progression Marker Initiative (PPMI),” Progress in Neurobiology, vol. 95, no. 4, pp. 629–635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Daducci, S. Gerhard, A. Griffa et al., “The connectome mapper: an open-source processing pipeline to map connectomes with MRI,” PLoS ONE, vol. 7, no. 12, Article ID e48121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Smith, M. Jenkinson, M. W. Woolrich et al., “Advances in functional and structural MR image analysis and implementation as FSL,” NeuroImage, vol. 23, supplement 1, pp. S208–S219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Fischl, “FreeSurfer,” NeuroImage, vol. 62, no. 2, pp. 774–781, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Schmahmann and D. Pandya, Fiber Pathways of the Brain, OUP, New York, NY, USA, 2009.
  21. A. O. Ceballos-Baumann, “Functional imaging in Parkinson's disease: activation studies with PET, fMRI and SPECT,” Journal of Neurology, Supplement, vol. 250, supplement 1, pp. I15–I23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Nandi, T. Z. Aziz, X. Liu, and J. F. Stein, “Brainstem motor loops in the control of movement,” Movement Disorders, vol. 17, supplement 3, pp. S22–S27, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Fillard, M. Descoteaux, A. Goh et al., “Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom,” NeuroImage, vol. 56, no. 1, pp. 220–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. Guide MUs, MathWorks, Natick, Mass, USA, 1998.
  26. A. T. Karagulle Kendi, S. Lehericy, M. Luciana, K. Ugurbil, and P. Tuite, “Altered diffusion in the frontal lobe in Parkinson disease,” American Journal of Neuroradiology, vol. 29, no. 3, pp. 501–505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. H. J. Kim, S. J. Kim, H. S. Kim et al., “Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson's disease,” Neuroscience Letters, vol. 550, pp. 64–68, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Zhang, I.-W. Wu, S. Buckley et al., “Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease,” Movement Disorders, vol. 30, no. 9, pp. 1229–1236, 2015. View at Publisher · View at Google Scholar
  29. M. Sharman, R. Valabregue, V. Perlbarg et al., “Parkinson's disease patients show reduced cortical-subcortical sensorimotor connectivity,” Movement Disorders, vol. 28, no. 4, pp. 447–454, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. W.-Q. Tan, C.-S. Yeoh, H. Rumpel et al., “Deterministic tractography of the nigrostriatal-nigropallidal pathway in Parkinson’s disease,” Scientific Reports, vol. 5, article 17283, 2015. View at Publisher · View at Google Scholar
  31. C. Scherfler, K. Seppi, K. J. Mair et al., “Left hemispheric predominance of nigrostriatal dysfunction in Parkinson's disease,” Brain, vol. 135, no. 11, pp. 3348–3354, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Schwingenschuh, D. Ruge, M. J. Edwards et al., “Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson's disease: a clinical and electrophysiological study,” Movement Disorders, vol. 25, no. 5, pp. 560–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Stockner, P. Schwingenschuh, A. Djamshidian et al., “Is transcranial sonography useful to distinguish scans without evidence of dopaminergic deficit patients from Parkinson's disease?” Movement Disorders, vol. 27, no. 9, pp. 1182–1185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. M. B. Knable, D. W. Jones, R. Coppola et al., “Lateralized differences in iodine-123-IBZM uptake in the basal ganglia in asymmetric Parkinson's disease,” Journal of Nuclear Medicine, vol. 36, no. 7, pp. 1216–1225, 1995. View at Google Scholar · View at Scopus
  35. C. D. Good, I. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak, “Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains,” NeuroImage, vol. 14, no. 3, pp. 685–700, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. K. C. Stewart, H. H. Fernandez, M. S. Okun, R. L. Rodriguez, C. E. Jacobson, and C. J. Hass, “Side onset influences motor impairments in Parkinson disease,” Parkinsonism & Related Disorders, vol. 15, no. 10, pp. 781–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Weintraub, A. B. Newberg, M. S. Cary et al., “Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson's disease,” Journal of Nuclear Medicine, vol. 46, no. 2, pp. 227–232, 2005. View at Google Scholar · View at Scopus
  38. P. Hagmann, O. Sporns, N. Madan et al., “White matter maturation reshapes structural connectivity in the late developing human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 44, pp. 19067–19072, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo fiber tractography using DT-MRI data,” Magnetic Resonance in Medicine, vol. 44, no. 4, pp. 625–632, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. E. T. Petersen, T. Lim, and X. Golay, “Model-free arterial spin labeling quantification approach for perfusion MRI,” Magnetic Resonance in Medicine, vol. 55, no. 2, pp. 219–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. W. Anderson, “Measurement of fiber orientation distributions using high angular resolution diffusion imaging,” Magnetic Resonance in Medicine, vol. 54, no. 5, pp. 1194–1206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Staempfli, C. Reischauer, T. Jaermann, A. Valavanis, S. Kollias, and P. Boesiger, “Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results,” NeuroImage, vol. 39, no. 1, pp. 119–126, 2008. View at Publisher · View at Google Scholar · View at Scopus