Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2011 (2011), Article ID 717130, 7 pages
http://dx.doi.org/10.1155/2011/717130
Review Article

Macrophage-Derived Biomarkers of Idiopathic Pulmonary Fibrosis

1Respiratory Diseases Section, Siena University, 53100 Siena, Italy
2Department of Pneumology, Freiburg University, Germany

Received 19 August 2010; Accepted 9 November 2010

Academic Editor: Andrew J. Halayko

Copyright © 2011 E. Bargagli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Eickelberg and M. Selman, “Update in diffuse parenchymal lung disease 2009,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 9, pp. 883–888, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. W. D. Travis, T. E. King, and T. E. King, “American thoracic society/European respiratory society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 2, pp. 277–304, 2002. View at Google Scholar · View at Scopus
  3. A. Prasse and J. Müller-Quernheim, “Non-invasive biomarkers in pulmonary fibrosis,” Respirology, vol. 14, no. 6, pp. 788–795, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. O. Deininger, M. Becker, and D. Suckau, “Tutorial: multivariate statistical treatment of imaging data for clinical biomarker discovery,” Methods in Molecular Biology, vol. 656, pp. 385–403, 2010. View at Google Scholar
  5. M. C. Emblom-Callahan, M. K. Chhina, and M. K. Chhina, “Genomic phenotype of non-cultured pulmonary fibroblasts in idiopathic pulmonary fibrosis,” Genomics, vol. 96, no. 3, pp. 134–145, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. B. Magi, E. Bargagli, L. Bini, and P. Rottoli, “Proteome analysis of bronchoalveolar lavage in lung diseases,” Proteomics, vol. 6, no. 23, pp. 6354–6369, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Selman, T. E. King, and A. Pardo, “Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy,” Annals of Internal Medicine, vol. 134, no. 2, pp. 136–151, 2001. View at Google Scholar · View at Scopus
  8. C. P. Baran, J. M. Opalek, and J. M. Opalek, “Important roles for macrophage colony-stimulating factor, CC chemokine ligand 2, and mononuclear phagocytes in the pathogenesis of pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 1, pp. 78–89, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. Prasse, D. V. Pechkovsky, and D. V. Pechkovsky, “A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 7, pp. 781–792, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. W. Park, MI. H. Ahn, and MI. H. Ahn, “Interleukin-13 and its receptors in idiopathic interstitial pneumonia: clinical implications for lung function,” Journal of Korean Medical Science, vol. 24, no. 4, pp. 614–620, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad, and K. Ley, “Development of monocytes, macrophages, and dendritic cells,” Science, vol. 327, no. 5966, pp. 656–661, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Geiser, “Morphological aspects of particle uptake by lung phagocytes,” Microscopy Research and Technique, vol. 57, no. 6, pp. 512–522, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Kodelja, C. Müller, O. Politz, N. Hakij, C. E. Orfanos, and S. Goerdt, “Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1α with a Th2- associated expression pattern,” Journal of Immunology, vol. 160, no. 3, pp. 1411–1418, 1998. View at Google Scholar · View at Scopus
  15. D. V. Pechkovsky, A. Prasse, and A. Prasse, “Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction,” Clinical Immunology, vol. 137, no. 1, pp. 89–101, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. A. Sica, C. Porta, E. Riboldi, and M. Locati, “Convergent pathways of macrophage polarization: the role of B cells,” European Journal of Immunology, vol. 40, no. 8, pp. 2131–2133, 2010. View at Publisher · View at Google Scholar · View at PubMed
  17. A. Venet, A. J. Hance, and C. Saltini, “Enhanced alveolar macrophage-mediated antigen-induced T lymphocyte proliferation in sarcoidosis,” Journal of Clinical Investigation, vol. 75, no. 1, pp. 293–301, 1985. View at Google Scholar · View at Scopus
  18. S. Homma, I. Nagaoka, H. Abe, K. Takahashi, K. Seyama, T. Nukiwa, and S. Kira, “Localization of platelet-derived growth factor and insulin-like growth factor I in the fibrotic lung,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 6 I, pp. 2084–2089, 1995. View at Google Scholar · View at Scopus
  19. S. I. Rennard, G. W. Hunninghake, P. B. Bitterman, and R. G. Crystal, “Production of fibronectin by the human alveolar macrophage: mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 11, pp. 7147–7151, 1981. View at Google Scholar · View at Scopus
  20. G. W. Hunninghake, “Role of alveolar macrophage- and lung T cell-derived mediators in pulmonary sarcoidosis,” Annals of the New York Academy of Sciences, vol. 465, pp. 82–90, 1986. View at Google Scholar · View at Scopus
  21. E. Song, N. Ouyang, M. Hörbelt, B. Antus, M. Wang, and M. S. Exton, “Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts,” Cellular Immunology, vol. 204, no. 1, pp. 19–28, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Hesse, M. Modolell, and M. Modolell, “Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism,” Journal of Immunology, vol. 167, no. 11, pp. 6533–6544, 2001. View at Google Scholar · View at Scopus
  23. F. C. Lin, YI. C. Chen, and S. C. Chang, “Clinical importance of bronchoalveolar lavage fluid and blood cytokines, surfactant protein D, and kerbs von lungren 6 antigen in idiopathic pulmonary alveolar proteinosis,” Mayo Clinic Proceedings, vol. 83, no. 12, pp. 1344–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. B. W. Kinder, K. K. Brown, F. X. McCormack, J. H. Ix, A. Kervitsky, M. I. Schwarz, and T. E. King, “Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis,” Chest, vol. 135, no. 6, pp. 1557–1563, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. AI. Cui, O. Anhenn, and O. Anhenn, “Angiogenic and angiostatic chemokines in idiopathic pulmonary fibrosis and granulomatous lung disease,” Respiration, vol. 80, pp. 372–378, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. Moeller, S. E. Gilpin, and S. E. Gilpin, “Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 7, pp. 588–594, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. Ricci, S. Mariotta, and S. Mariotta, “Serum CA 15-3 is increased in pulmonary fibrosis,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 26, no. 1, pp. 54–63, 2009. View at Google Scholar · View at Scopus
  28. S. K. Madala, J. T. Pesce, and J. T. Pesce, “Matrix metalloproteinase 12-deficiency augments extracellular matrix degrading metalloproteinases and attenuates IL-13-dependent fibrosis,” Journal of Immunology, vol. 184, no. 7, pp. 3955–3963, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. N. Amara, D. Goven, F. Prost, R. Muloway, B. Crestani, and J. Boczkowski, “NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFβ1-induced fibroblast differentiation into myofibroblasts,” Thorax, vol. 65, no. 8, pp. 733–738, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. A. Bergeron, P. Soler, and P. Soler, “Cytokine profiles in idiopathic pulmonary fibrosis suggest an important role for TGF-β and IL-10,” European Respiratory Journal, vol. 22, no. 1, pp. 69–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Kelly, M. Kolb, P. Bonniaud, and J. Gauldie, “Re-evaluation of fibrogenic cytokines in lung fibrosis,” Current Pharmaceutical Design, vol. 9, no. 1, pp. 39–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Shinoda, S. Tasaka, and S. Tasaka, “Elevated CC chemokine level in bronchoalveolar lavage fluid is predictive of a poor outcome of idiopathic pulmonary fibrosis,” Respiration, vol. 78, no. 3, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. Prasse, D. V. Pechkovsky, and D. V. Pechkovsky, “CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis,” Arthritis and Rheumatism, vol. 56, no. 5, pp. 1685–1693, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. F. Kollert, C. Probst, J. Müller-Quernheim, G. Zissel, and A. Prasse, “CCL18 production is decreased in alveolar macrophages from cigarette smokers,” Inflammation, vol. 32, no. 3, pp. 163–168, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. Prasse, C. Probst, and C. Probst, “Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 8, pp. 717–723, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. B. D. Car, F. Meloni, M. Luisetti, G. Semenzato, G. Gialdroni-Grassi, and A. Walz, “Elevated IL-8 and MCP-1 in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis,” American Journal of Respiratory and Critical Care Medicine, vol. 149, no. 3 I, pp. 655–659, 1994. View at Google Scholar · View at Scopus
  37. M. Suga, K. Iyonaga, H. Ichiyasu, N. Saita, H. Yamasaki, and M. Ando, “Clinical significance of MCP-1 levels in BALF and serum in patients with interstitial lung diseases,” European Respiratory Journal, vol. 14, no. 2, pp. 376–382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Vasakova, M. Sterclova, and M. Sterclova, “Bronchoalveolar lavage fluid cellular characteristics, functional parameters and cytokine and chemokine levels in interstitial lung diseases,” Scandinavian Journal of Immunology, vol. 69, no. 3, pp. 268–274, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. D. F. Van Wijk, S. I. Van Leuven, and S. I. Van Leuven, “Chemokine ligand 2 genetic variants, serum monocyte chemoattractant protein-1 levels, and the risk of coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 7, pp. 1460–1466, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. M. Rosenkilde and T. W. Schwartz, “The chemokine system—a major regulator of angiogenesis in health and disease,” APMIS, vol. 112, no. 7-8, pp. 481–495, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. S. Friedland, “Chemokines in viral disease,” Research in Virology, vol. 147, no. 2-3, pp. 131–138, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. M. W. Ziegenhagen, P. Zabel, G. Zissel, M. Schlaak, and J. Müller-Quernheim, “Serum level of interleukin 8 is elevated in idiopathic pulmonary fibrosis and indicates disease activity,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 3, pp. 762–768, 1998. View at Google Scholar · View at Scopus
  43. P. G. Tsoutsou, K. I. Gourgoulianis, and K. I. Gourgoulianis, “Cytokine levels in the sera of patients with idiopathic pulmonary fibrosis,” Respiratory Medicine, vol. 100, no. 5, pp. 938–945, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. Y. Totani, Y. Saitoh, H. Sakakibara, I. Miyamori, and T. Ishizaki, “Clinical characterization of interleukin-8 in patients with idiopathic pulmonary fibrosis,” Nihon Kokyuki Gakkai zasshi, vol. 40, no. 11, pp. 869–874, 2002. View at Google Scholar · View at Scopus
  45. P. Rottoli, B. Magi, and B. Magi, “Cytokine profile and proteome analysis in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systematic sclerosis and idiopathic pulmonary fibrosis,” Proteomics, vol. 5, no. 5, pp. 1423–1430, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. E. Silva, S. Bourin, and S. Bourin, “A quantitative proteomic analysis of soluble bronchoalveolar fluid proteins from patients with sarcoidosis and chronic beryllium disease,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 24, no. 1, pp. 24–32, 2007. View at Google Scholar · View at Scopus
  47. J. A. Bons, M. Drent, F. G. Bouwman, E. C. Mariman, M. P. van Dieijen-Visser, and W. K. Wodzig, “Potential biomarkers for diagnosis of sarcoidosis using proteomics in serum,” Respiratory Medicine, vol. 101, no. 8, pp. 1687–1695, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. R. Wattiez, C. Hermans, C. Cruyt et al., “Human BAL fluid protein two dimensional database: study of ILD,” Electrophoresis, vol. 21, pp. 2703–2712, 2000. View at Google Scholar
  49. B. Magi, L. Bini, and L. Bini, “Bronchoalveolar lavage fluid protein composition in patients with sarcoidosis and idiopathic pulmonary fibrosis: a two-dimensional electrophoretic study,” Electrophoresis, vol. 23, no. 19, pp. 3434–3444, 2002. View at Google Scholar · View at Scopus
  50. E. Bargagli, C. Olivieri, and C. Olivieri, “Calgranulin B (S100A9) levels in bronchoalveolar lavage fluid of patients with interstitial lung diseases,” Inflammation, vol. 31, no. 5, pp. 351–354, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. E. Bargagli, C. Olivieri, and C. Olivieri, “Analysis of macrophage migration inhibitory factor (MIF) in patients with idiopathic pulmonary fibrosis,” Respiratory Physiology and Neurobiology, vol. 167, no. 3, pp. 261–267, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. E. Lorenz, M. S. Muhlebach, and M. S. Muhlebach, “Different expression ratio of S100A8/A9 and S100A12 in acute and chronic lung diseases,” Respiratory Medicine, vol. 102, no. 4, pp. 567–573, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. C. Ryckman, K. Vandal, P. Rouleau, M. Talbot, and P. A. Tessier, “Proinflammatory activities of S100: proteins S100A8 , S100A9 and S100A8/A9 induce neutrophil chemotaxis and adhesion,” Journal of Immunology, vol. 166, pp. 4678–4688, 2001. View at Google Scholar · View at Scopus
  54. C. Gebhardt, J. Németh, P. Angel, and J. Hess, “S100A8 and S100A9 in inflammation and cancer,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1622–1631, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. N. Anceriz, K. Vandal, and P. A. Tessier, “S100A9 mediates neutrophil adhesion to fibronectin through activation of β2 integrins,” Biochemical and Biophysical Research Communications, vol. 354, no. 1, pp. 84–89, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. J. Roth, S. Teigelkamp, M. Wilke, L. Grun, B. Tummler, and C. Sorg, “Complex pattern of the myelo-monocytic differentiation antigens MRP8 and MRP14 during chronic airway inflammation,” Immunobiology, vol. 186, no. 3-4, pp. 304–314, 1992. View at Google Scholar · View at Scopus
  57. J. M. Englert, L. E. Hanford, and L. E. Hanford, “A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis,” American Journal of Pathology, vol. 172, no. 3, pp. 583–591, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. Foell and J. Roth, “Proinflammatory S100 proteins in arthritis and autoimmune disease,” Arthritis and Rheumatism, vol. 50, no. 12, pp. 3762–3771, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. K. Odink, N. Cerletti, and N. Cerletti, “Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis,” Nature, vol. 330, no. 6143, pp. 80–82, 1987. View at Google Scholar · View at Scopus
  60. A. Kosaki, T. Hasegawa, and T. Hasegawa, “Increased plasma S100A12 (EN-RAGE) levels in patients with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5423–5428, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. E. Bargagli, C. Olivieri, M. Cintorino, R. M. Refini, N. Bianchi, A. Prasse, and P. Rottoli, “Calgranulin B (S100A9/MRP14): a key molecule in idiopathic pulmonary fibrosis?” Inflammation, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. N. M. Korthagen, M. M. Nagtegaal, C. H.M. Van Moorsel, K. M. Kazemier, J. M.M. Van Den Bosch, and J. C. Grutters, “MRP14 is elevated in the bronchoalveolar lavage fluid of fibrosing interstitial lung diseases,” Clinical and Experimental Immunology, vol. 161, no. 2, pp. 342–347, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. G. Marko-Varga, H. Lindberg, and H. Lindberg, “Discovery of biomarker candidates within disease by protein profiling: principles and concepts,” Journal of Proteome Research, vol. 4, no. 4, pp. 1200–1212, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. P. Ren, I. O. Rosas, S. D. MacDonald, H. P. Wu, E. M. Billings, and B. R. Gochuico, “Impairment of alveolar macrophage transcription in idiopathic pulmonary fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 11, pp. 1151–1157, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus