Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2012, Article ID 301475, 6 pages
http://dx.doi.org/10.1155/2012/301475
Clinical Study

Significant Differences in Markers of Oxidant Injury between Idiopathic and Bronchopulmonary-Dysplasia-Associated Pulmonary Hypertension in Children

1Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
2Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA

Received 27 February 2012; Accepted 29 April 2012

Academic Editor: Serpil Erzurum

Copyright © 2012 Kimberly B. Vera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Yung, A. C. Widlitz, E. B. Rosenzweig, D. Kerstein, G. Maislin, and R. J. Barst, “Outcomes in children with idiopathic pulmonary arterial hypertension,” Circulation, vol. 110, no. 6, pp. 660–665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Khemani, D. B. McElhinney, L. Rhein et al., “Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era,” Pediatrics, vol. 120, no. 6, pp. 1260–1269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. I. M. Robbins, J. D. Morrow, and B. W. Christman, “Oxidant stress but not thromboxane decreases with epoprostenol therapy,” Free Radical Biology and Medicine, vol. 38, no. 5, pp. 568–574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. J. M. Roberts and J. D. Morrow, “Measurement of F2-isoprostanes as an index of oxidative stress in vivo,” Free Radical Biology and Medicine, vol. 28, no. 4, pp. 505–513, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. L. J. Janssen, “Isoprostanes and lung vascular pathology,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 4, pp. 383–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. D. Morrow and L. J. Roberts, “Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress,” Methods in Enzymology, vol. 300, pp. 3–12, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. P. A. Harris, R. Taylor, R. Thielke, J. Payne, N. Gonzalez, and J. G. Conde, “Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support,” Journal of Biomedical Informatics, vol. 42, no. 2, pp. 377–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. Kang, J. D. Morrow, L. J. Roberts, J. H. Newman, and M. Banerjee, “Airway and vascular effects of 8-epi-prostaglandin F(2α) in isolated perfused rat lung,” Journal of Applied Physiology, vol. 74, no. 1, pp. 460–465, 1993. View at Google Scholar
  9. T. Ahola, V. Fellman, I. Kjellmer, K. O. Raivio, and R. Lapatto, “Plasma 8-isoprostane is increased in preterm infants who develop bronchopulmonary dysplasia or periventricular leukomalacia,” Pediatric Research, vol. 56, no. 1, pp. 88–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Comporti, C. Signorini, S. Leoncini, G. Buonocore, V. Rossi, and L. Ciccoli, “Plasma F2-isoprostanes are elevated in newborns and inversely correlated to gestational age,” Free Radical Biology and Medicine, vol. 37, no. 5, pp. 724–732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. R. Stenmark and S. H. Abman, “Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia,” Annual Review of Physiology, vol. 67, pp. 623–661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. L. Milne, H. Yin, and J. D. Morrow, “Human biochemistry of the isoprostane pathway,” Journal of Biological Chemistry, vol. 283, no. 23, pp. 15533–15537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. P. Fessel, N. A. Porter, K. P. Moore, J. R. Sheller, and L. J. Roberts, “Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16713–16718, 2002. View at Publisher · View at Google Scholar · View at Scopus