Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2012, Article ID 736290, 9 pages
http://dx.doi.org/10.1155/2012/736290
Research Article

The Effect of Ventilation, Age, and Asthmatic Condition on Ultrafine Particle Deposition in Children

1Center for Environmental Resource Management, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
2Civil Engineering Department, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
3Geological Sciences Department, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
4Aerosol and Dosimetry Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108-5127, USA
5School of Nursing, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
6Center for Environmental Health Sciences, University of New Mexico, Los Lunas, NM 87131, USA

Received 15 October 2011; Revised 10 April 2012; Accepted 24 April 2012

Academic Editor: Cecilie Svanes

Copyright © 2012 Hector A. Olvera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. G. Kreyling, M. Semmler, F. Erbe et al., “Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low,” Journal of Toxicology and Environmental Health—Part A, vol. 65, no. 20, pp. 1513–1530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Nemmar, M. F. Hoylaerts, P. H. M. Hoet et al., “Ultrafine particles affect experimental thrombosis in an in vivo hamster model,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 7, pp. 998–1004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Oberdörster, “Pulmonary effects of inhaled ultrafine particles,” International Archives of Occupational and Environmental Health, vol. 74, no. 1, pp. 1–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Oberdörster, Z. Sharp, V. Atudorei et al., “Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats,” Journal of Toxicology and Environmental Health—Part A, vol. 65, no. 20, pp. 1531–1543, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. Park, M. S. O'Neill, P. S. Vokonas, D. Sparrow, and J. Schwartz, “Effects of air pollution on heart rate variability: the VA normative aging study,” Environmental Health Perspectives, vol. 113, no. 3, pp. 304–309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. H. M. Hoet, I. Brüske-Hohlfeld, and O. V. Salata, “Nanoparticles—known and unknown health risks,” Journal of Nanobiotechnology, vol. 2, no. 1, article 12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Oberdörster, Z. Sharp, V. Atudorei et al., “Translocation of inhaled ultrafine particles to the brain,” Inhalation Toxicology, vol. 16, no. 6-7, pp. 437–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Oberdörster and M. J. Utell, “Ultrafine particles in the urban air: to the respiratory tract—ang beyond?” Environmental Health Perspectives, vol. 110, no. 8, pp. A440–A441, 2002. View at Google Scholar · View at Scopus
  10. S. Fiorito, A. Serafino, F. Andreola, A. Togna, and G. Togna, “Toxicity and biocompatibility of carbon nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 3, pp. 591–599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Gopalan, I. Ito, C. D. Branch, C. Stephens, J. A. Roth, and R. Ramesh, “Nanoparticle based systemic gene therapy for lung cancer: molecular mechanisms and strategies to suppress nanoparticle-mediated inflammatory response,” Technology in Cancer Research and Treatment, vol. 3, no. 6, pp. 647–657, 2004. View at Google Scholar · View at Scopus
  12. J. M. Koziara, P. R. Lockman, D. D. Allen, and R. J. Mumper, “The blood-brain barrier and brain drug delivery,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 9-10, pp. 2712–2735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Kreuter, “Nanoparticulate systems for brain delivery of drugs,” Advanced Drug Delivery Reviews, vol. 47, no. 1, pp. 65–81, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. P. R. Lockman, J. Koziara, K. E. Roder et al., “In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles,” Pharmaceutical Research, vol. 20, no. 5, pp. 705–713, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. R. Lockman, R. J. Mumper, M. A. Khan, and D. D. Allen, “Nanoparticle technology for drug delivery across the blood-brain barrier,” Drug Development and Industrial Pharmacy, vol. 28, no. 1, pp. 1–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. P. R. Lockman, M. O. Oyewumi, J. M. Koziara, K. E. Roder, R. J. Mumper, and D. D. Allen, “Brain uptake of thiamine-coated nanoparticles,” Journal of Controlled Release, vol. 93, no. 3, pp. 271–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Mansouri, Y. Cuie, F. Winnik et al., “Characterization of folate-chitosan-DNA nanoparticles for gene therapy,” Biomaterials, vol. 27, no. 9, pp. 2060–2065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Medina, M. J. Santos-Martinez, A. Radomski, O. I. Corrigan, and M. W. Radomski, “Nanoparticles: pharmacological and toxicological significance,” British Journal of Pharmacology, vol. 150, no. 5, pp. 552–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. B. Tiwari and M. M. Amiji, “A review of nanocarrier-based CNS delivery systems,” Current Drug Delivery, vol. 3, no. 2, pp. 219–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Oberdorster, R. M. Gelein, J. Ferin, and B. Weiss, “Association of particulate air pollution and acute mortality: involvement of ultrafine particles?” Inhalation Toxicology, vol. 7, no. 1, pp. 111–124, 1995. View at Google Scholar · View at Scopus
  21. G. Oberdörster, A. Maynard, K. Donaldson et al., “Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy,” Particle and Fibre Toxicology, vol. 2, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Pedata, E. M. Garzillo, and N. Sannolo, “Ultrafine particles and effects on the organism: literature review,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 32, no. 1, pp. 23–31, 2010. View at Google Scholar · View at Scopus
  23. D. W. Dockery, H. Luttman-Gibson, D. Q. Rich et al., “Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter defibrillators,” Environmental Health Perspectives, vol. 113, no. 6, pp. 670–674, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. W. Frampton, M. J. Utell, W. Zareba et al., “Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma,” Research Report, no. 126, pp. 1–47, 2004. View at Google Scholar · View at Scopus
  25. M. W. Frampton, “Does inhalation of ultrafine particles cause pulmonary vasular effects in humans?” Inhalation Toxicology, vol. 19, no. 1, pp. 75–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Braz Nogueira, “Air pollution and cardiovascular disease,” Revista Portuguesa de Cardiologia, vol. 28, no. 6, pp. 715–733, 2009. View at Google Scholar · View at Scopus
  27. Y. Bai, A. K. Suzuki, and M. Sagai, “The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: role of active oxygen species,” Free Radical Biology and Medicine, vol. 30, no. 5, pp. 555–562, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Baulig, M. Garlatti, V. Bonvallot et al., “Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells,” American Journal of Physiology, vol. 285, no. 3, pp. L671–L679, 2003. View at Google Scholar · View at Scopus
  29. D. Diaz-Sanchez, “The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease,” Allergy, vol. 52, no. 38, supplement, pp. 52–56, 1997. View at Google Scholar · View at Scopus
  30. D. Diaz-Sanchez, M. P. Garcia, M. Wang, M. Jyrala, and A. Saxon, “Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa,” Journal of Allergy and Clinical Immunology, vol. 104, no. 6, pp. 1183–1188, 1999. View at Google Scholar · View at Scopus
  31. D. Diaz-Sanchez, M. Jyrala, D. Ng, A. Nel, and A. Saxon, “In vivo nasal challenge with diesel exhaust particles enhances expression of the CC chemokines rantes, MIP-1α, and MCP-3 in humans,” Clinical Immunology, vol. 97, no. 2, pp. 140–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Diaz-Sanchez, M. Penichet-Garcia, and A. Saxon, “Diesel exhaust particles directly induce activated mast cells to degranulate and increase histamine levels and symptom severity,” Journal of Allergy and Clinical Immunology, vol. 106, no. 6, pp. 1140–1146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Garshick, F. Laden, J. E. Hart et al., “Lung cancer and vehicle exhaust in trucking industry workers,” Environmental Health Perspectives, vol. 116, no. 10, pp. 1327–1332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. L. Holder, D. Lucas, R. Goth-goldstein, and C. P. Koshland, “Cellular response to diesel exhaust particles strongly depends on the exposure method,” Toxicological Sciences, vol. 103, no. 1, pp. 108–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Kagawa, “Health effects of diesel exhaust emissions—a mixture of air pollutants of worldwide concern,” Toxicology, vol. 181-182, pp. 349–353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Lewtas, “Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects,” Mutation Research, vol. 636, no. 1–3, pp. 95–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. O. McClellan, “Health effects of exposure to diesel exhaust particles,” Annual Review of Pharmacology and Toxicology, vol. 27, pp. 279–300, 1987. View at Google Scholar · View at Scopus
  38. P. Møller, J. K. Folkmann, L. Forchhammer et al., “Air pollution, oxidative damage to DNA, and carcinogenesis,” Cancer Letters, vol. 266, no. 1, pp. 84–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. F. Bateson and J. Schwartz, “Children's response to air pollutants,” Journal of Toxicology and Environmental Health—Part A, vol. 71, no. 3, pp. 238–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Moshammer, A. Bartonova, W. Hanke et al., “Air pollution: a threat to the health of our children,” Acta Paediatrica, International Journal of Paediatrics, vol. 95, no. 453, pp. 93–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. M. Patel and R. L. Miller, “Air pollution and childhood asthma: recent advances and future directions,” Current Opinion in Pediatrics, vol. 21, no. 2, pp. 235–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. J. Akinbami, J. E. Moorman, and X. Liu, “Asthma prevalence, health care use, and mortality: United States, 2005–2009,” National Health Statistics Reports, 2011, http://www.cdc.gov/nchs/products/hestats.htm. View at Google Scholar
  43. N. Pearce, N. Aït-Khaled, R. Beasley et al., “Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC),” Thorax, vol. 62, no. 9, pp. 757–765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. W. D. Bennett and G. C. Smaldone, “Human variation in the peripheral air-space deposition of inhaled particles,” Journal of Applied Physiology, vol. 62, no. 4, pp. 1603–1610, 1987. View at Google Scholar · View at Scopus
  45. J. Heyder, J. Gebhart, and G. Scheuch, “Influence of human lung morphology on particle deposition,” Journal of Aerosol Medicine, vol. 1, no. 2, pp. 81–88, 1988. View at Google Scholar
  46. W. D. Bennet, “Human variation in spontaneous breathing deposition fraction: a review,” Journal of Aerosol Medicine, vol. 1, no. 2, pp. 67–80, 1988. View at Google Scholar
  47. D. C. Chalupa, P. E. Morrow, G. Oberdörster, M. J. Utell, and M. W. Frampton, “Ultrafine particle deposition in subjects with asthma,” Environmental Health Perspectives, vol. 112, no. 8, pp. 879–882, 2004. View at Google Scholar · View at Scopus
  48. International Comission on Radiological Protection, Human Respiratory Tract Model for Radiological Protection, ICRP, Elsevire Science, Tarrytown, NY, USA, 1994.
  49. M. I. Asher, U. Keil, H. R. Anderson et al., “International study of asthma and allergies in childhood (ISAAC): rationale and methods,” European Respiratory Journal, vol. 8, no. 3, pp. 483–491, 1995. View at Google Scholar · View at Scopus
  50. M. R. Miller, J. Hankinson, V. Brusasco et al., “Standardisation of spirometry,” European Respiratory Journal, vol. 26, no. 2, pp. 319–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. S. E. Sarnat, A. U. Raysoni, W.-W. Li et al., “Air pollution and acute respiratory response in a panel of asthmatic children along the U.S.-Mexico Border,” Environmental Health Perspectives, vol. 120, no. 3, pp. 437–444, 2012. View at Google Scholar
  52. B. W. Brown, “The crossover experiment for clinical trials,” Biometrics, vol. 36, no. 1, pp. 69–79, 1980. View at Google Scholar · View at Scopus
  53. E. Huitema, The Analysis of Covariance and Alternatives: Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies, John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 2011.
  54. Y. Zhu and W. C. Hinds, “Predicting particle number concentrations near a highway based on vertical concentration profile,” Atmospheric Environment, vol. 39, no. 8, pp. 1557–1566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Zhu, W. C. Hinds, S. Kim, S. Shen, and C. Sioutas, “Study of ultrafine particles near a major highway with heavy-duty diesel traffic,” Atmospheric Environment, vol. 36, no. 27, pp. 4323–4335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Zhu, J. Pudota, D. Collins et al., “Air pollutant concentrations near three Texas roadways, Part I: ultrafine particles,” Atmospheric Environment, vol. 43, no. 30, pp. 4513–4522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Löndahl, J. Pagels, E. Swietlicki et al., “A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans,” Journal of Aerosol Science, vol. 37, no. 9, pp. 1152–1163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. W. D. Bennett and K. L. Zeman, “Deposition of fine particles in children spontaneously breathing at rest,” Inhalation Toxicology, vol. 10, no. 9, pp. 831–842, 1998. View at Google Scholar · View at Scopus
  59. W. H. Dietz and T. N. Robinson, “Use of the body mass index (BMI) as a measure of overweight in children and adolescents,” Journal of Pediatrics, vol. 132, no. 2, pp. 191–193, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Tabachnik, N. Muller, B. Toye, and H. Levison, “Measurement of ventilation in children using the respiratory inductive plethysmograph,” Journal of Pediatrics, vol. 99, no. 6, pp. 895–899, 1981. View at Google Scholar · View at Scopus
  61. M. J. Tobin, T. S. Chadha, and G. Jenouri, “Breathing patterns. 1. Normal subjects,” Chest, vol. 84, no. 2, pp. 202–205, 1983. View at Google Scholar · View at Scopus
  62. C. C. Daigle, D. C. Chalupa, F. R. Gibb et al., “Ultrafine particle deposition in humans during rest and exercise,” Inhalation Toxicology, vol. 15, no. 6, pp. 539–552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Löndahl, A. Massling, J. Pagels, E. Swietlicki, E. Vaclavik, and S. Loft, “Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise,” Inhalation Toxicology, vol. 19, no. 2, pp. 109–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Löndahl, A. Massling, E. Swietlicki et al., “Experimentally determined human respiratory tract deposition of airborne particles at a busy street,” Environmental Science and Technology, vol. 43, no. 13, pp. 4659–4664, 2009. View at Publisher · View at Google Scholar · View at Scopus