Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2013, Article ID 618576, 9 pages
http://dx.doi.org/10.1155/2013/618576
Research Article

Comparison Study of Airway Reactivity Outcomes due to a Pharmacologic Challenge Test: Impulse Oscillometry versus Least Mean Squared Analysis Techniques

1Nemours Research Lung Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
2Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
3Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA
4Division of Neonatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
5Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA

Received 31 December 2012; Revised 6 March 2013; Accepted 7 March 2013

Academic Editor: S. L. Johnston

Copyright © 2013 Elena Rodriguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. K. Bhutani, E. M. Sivieri, S. Abbasi, and T. H. Shaffer, “Evaluation of neonatal pulmonary mechanics and energetics: a two factor least mean square analysis,” Pediatric Pulmonology, vol. 4, no. 3, pp. 150–158, 1988. View at Google Scholar · View at Scopus
  2. C. S. Beardsmore, P. Helms, J. Stocks, D. J. Hatch, and M. Silverman, “Improved esophageal balloon technique for use in infants,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 49, no. 4, pp. 735–742, 1980. View at Google Scholar · View at Scopus
  3. A. Baydur, P. K. Behrakis, and W. A. Zin, “A simple method for assessing the validity of the esophageal balloon technique,” American Review of Respiratory Disease, vol. 126, no. 5, pp. 788–791, 1982. View at Google Scholar · View at Scopus
  4. V. K. Bhutani, T. H. Shaffer, and D. Vidyasagar, Eds., Neonatal Pulmonary Function Testing: Physiological, Technical and Clinical Considerations, Perinatology Press, Ithaca, NY, USA, 1988.
  5. L. S. Goldsmith, J. S. Greenspan, S. D. Rubenstein, M. R. Wolfson, and T. H. Shaffer, “Immediate improvement in lung volume after exogenous surfactant: alveolar recruitment versus increased distention,” Journal of Pediatrics, vol. 119, no. 3, pp. 424–428, 1991. View at Google Scholar · View at Scopus
  6. A. B. Dubois, A. W. Brody, D. H. Lewis, and B. F. Burgess Jr., “Oscillation mechanics of lungs and chest in man,” Journal of Applied Physiology, vol. 8, no. 6, pp. 587–594, 1956. View at Google Scholar
  7. H. J. Smith, P. Reinhold, and M. D. Goldman, “Forced oscillation technique and impulse oscillometry,” European Respiratory Monograph, vol. 31, pp. 72–105, 2005. View at Google Scholar
  8. H. Bisgaard and B. Klug, “Lung function measurement in awake young children,” European Respiratory Journal, vol. 8, no. 12, pp. 2067–2075, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Delacourt, H. Lorino, M. Herve-Guillot, P. Reinert, A. Harf, and B. Housset, “Use of the forced oscillation technique to assess airway obstruction and reversibility in children,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3, part 1, pp. 730–736, 2000. View at Google Scholar · View at Scopus
  10. F. M. Ducharme and G. M. Davis, “Respiratory resistance in the emergency department: a reproducible and responsive measure of asthma severity,” Chest, vol. 113, no. 6, pp. 1566–1572, 1998. View at Google Scholar · View at Scopus
  11. B. Klug and H. Bisgaard, “Measurement of lung function in awake 2–4-year-old asthmatic children during methacholine challenge and acute asthma: a comparison of the impulse oscillation technique, the interrupter technique, and transcutaneous measurement of oxygen versus whole-body plethysmography,” Pediatric Pulmonology, vol. 21, no. 5, pp. 290–300, 1996. View at Google Scholar · View at Scopus
  12. B. Klug and H. Bisgaard, “Repeatability of methacholine challenges in 2- to 4-year-old children with asthma, using a new technique for quantitative delivery of aerosol,” Pediatric Pulmonology, vol. 23, no. 4, pp. 278–286, 1997. View at Google Scholar · View at Scopus
  13. B. Klug and H. Bisgaard, “Specific airway resistance, interrupter resistance, and respiratory impedance in healthy children aged 2–7 years,” Pediatric Pulmonology, vol. 25, no. 5, pp. 322–331, 1998. View at Google Scholar
  14. B. Klug and H. Bisgaard, “Lung function and short-term outcome in young asthmatic children,” European Respiratory Journal, vol. 14, no. 5, pp. 1185–1189, 1999. View at Google Scholar · View at Scopus
  15. B. Klug, K. G. Nielsen, and H. Bisgaard, “Observer variability of lung function measurements in 2–6-yr-old children,” European Respiratory Journal, vol. 16, no. 3, pp. 472–475, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Stănescu, N. E. Moavero, C. Veriter, and L. Brasseur, “Frequency dependence of respiratory resistance in healthy children,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 47, no. 2, pp. 268–272, 1979. View at Google Scholar · View at Scopus
  17. E. Oostveen, D. MacLeod, H. Lorino et al., “The forced oscillation technique in clinical practice: methodology, recommendations and future developments,” European Respiratory Journal, vol. 22, no. 6, pp. 1026–1041, 2003. View at Google Scholar · View at Scopus
  18. J. J. Pillow, P. D. Sly, and Z. Hantos, “Monitoring of lung volume recruitment and derecruitment using oscillatory mechanics during high-frequency oscillatory ventilation in the preterm lamb,” Pediatric Critical Care Medicine, vol. 5, no. 2, pp. 172–180, 2004. View at Google Scholar · View at Scopus
  19. E. Rodriguez, M. B. Bober, L. Davey et al., “Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy,” Pediatric Pulmonology, vol. 47, pp. 917–922, 2012. View at Google Scholar
  20. U. Frey, M. Silverman, R. Kraemer, and A. C. Jackson, “High-frequency respiratory impedance measured by forced-oscillation technique in infants,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 2, pp. 363–370, 1998. View at Google Scholar · View at Scopus
  21. K. N. Desager, W. Buhr, M. Willemen et al., “Measurement of total respiratory impedance in infants by the forced oscillation technique,” Journal of Applied Physiology, vol. 71, no. 2, pp. 770–776, 1991. View at Google Scholar · View at Scopus
  22. K. N. Desager, M. Cauberghs, J. Naudts, and K. P. van de Woestijne, “Influence of upper airway shunt on total respiratory impedance in infants,” Journal of Applied Physiology, vol. 87, no. 3, pp. 902–909, 1999. View at Google Scholar · View at Scopus
  23. K. N. Desager, M. Willemen, H. P. Van Bever, W. De Backer, and P. A. Vermeire, “Evaluation of nasal impedance using the forced oscillation technique in infants,” Pediatric Pulmonology, vol. 11, no. 1, pp. 1–7, 1991. View at Google Scholar · View at Scopus
  24. U. Frey, “Forced oscillation technique in infants and young children,” Paediatric Respiratory Reviews, vol. 6, no. 4, pp. 246–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. L. Hall, Z. Hantos, J. H. Wildhaber, F. Peták, and P. D. Sly, “Methacholine responsiveness in infants assessed with low frequency forced oscillation and forced expiration techniques,” Thorax, vol. 56, no. 1, pp. 42–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. C. J. Lanteri and P. D. Sly, “Changes in respiratory mechanics with age,” Journal of Applied Physiology, vol. 74, no. 1, pp. 369–378, 1993. View at Google Scholar · View at Scopus
  27. T. H. Shaffer, V. K. Bhutani, M. R. Wolfson, R. B. Penn, and N. N. Tran, “In vivo mechanical properties of the developing airway,” Pediatric Research, vol. 25, no. 2, pp. 143–146, 1989. View at Google Scholar · View at Scopus
  28. G. L. Hall, Z. Hantos, F. Petak et al., “Airway and respiratory tissue mechanics in normal infants,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4, part 1, pp. 1397–1402, 2000. View at Google Scholar · View at Scopus
  29. J. J. Pillow, J. Stocks, P. D. Sly, and Z. Hantos, “Partitioning of airway and parenchymal mechanics in unsedated newborn infants,” Pediatric Research, vol. 58, no. 6, pp. 1210–1215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. T. L. Miller, C. J. Singhaus, T. I. Sherman, J. S. Greenspan, and T. H. Shaffer, “Physiologic implications of helium as a carrier gas for inhaled nitric oxide in a neonatal model of Bethanecol-induced bronchoconstriction,” Pediatric Critical Care Medicine, vol. 7, no. 2, pp. 159–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. E. A. Mates, J. Hildebrandt, J. C. Jackson, P. Tarczy-Hornoch, and M. P. Hlastala, “Shunt and ventilation-perfusion distribution during partial liquid ventilation in healthy piglets,” Journal of Applied Physiology, vol. 82, no. 3, pp. 933–942, 1997. View at Google Scholar · View at Scopus
  32. M. A. Enrione, M. C. Papo, C. L. Leach et al., “Regional pulmonary blood flow during partial liquid ventilation in normal and acute oleic acid-induced lung-injured piglets,” Critical Care Medicine, vol. 27, no. 12, pp. 2716–2723, 1999. View at Google Scholar · View at Scopus
  33. D. M. Steinhorn, M. C. Papo, A. T. Rotta, A. Aljada, B. P. Fuhrman, and P. Dandona, “Liquid ventilation attenuates pulmonary oxidative damage,” Journal of Critical Care, vol. 14, no. 1, pp. 20–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Wolf, H. Lohbrunner, T. Busch et al., “"Ideal PEEP" is superior to high dose partial liquid ventilation with low PEEP in experimental acute lung injury,” Intensive Care Medicine, vol. 27, no. 12, pp. 1937–1948, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. R. K. M. Krishnan, P. A. Meyers, C. Worwa, R. Goertz, G. Schauer, and M. C. Mammel, “Standardized lung recruitment during high frequency and conventional ventilation: similar pathophysiologic and inflammatory responses in an animal model of respiratory distress syndrome,” Intensive Care Medicine, vol. 30, no. 6, pp. 1195–1203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. L. Nold, P. A. Meyers, C. T. Worwa et al., “Decreased lung injury after surfactant in piglets treated with continuous positive airway pressure or synchronized intermittent mandatory ventilation,” Neonatology, vol. 92, no. 1, pp. 19–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. L. Lampland, P. A. Meyers, C. T. Worwa, E. C. Swanson, and M. C. Mammel, “Gas exchange and lung inflammation using nasal intermittent positive-pressure ventilation versus synchronized intermittent mandatory ventilation in piglets with saline lavage-induced lung injury: an observational study,” Critical Care Medicine, vol. 36, no. 1, pp. 183–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. T. L. Miller, T. J. Blackson, T. H. Shaffer, and S. M. Touch, “Tracheal gas insufflation-augmented continuous positive airway pressure in a spontaneously breathing model of neonatal respiratory distress,” Pediatric Pulmonology, vol. 38, no. 5, pp. 386–395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Schlatter and J. L. Saulnier, “Bethanechol chloride oral solutions: stability and use in infants,” Annals of Pharmacotherapy, vol. 31, no. 3, pp. 294–296, 1997. View at Google Scholar · View at Scopus
  40. E. N. Keklikian, M. R. Wolfson, and T. H. Shaffer, “Caffeine potentiates airway responsiveness in the neonatal lamb,” Pediatric Pulmonology, vol. 12, no. 1, pp. 17–22, 1992. View at Google Scholar · View at Scopus
  41. V. K. Bhutani, R. J. Koslo, and T. H. Shaffer, “The effect of tracheal, smooth muscle tone on neonatal airway collapsibility,” Pediatric Research, vol. 20, no. 6, pp. 492–495, 1986. View at Google Scholar · View at Scopus
  42. R. B. Penn, M. R. Wolfson, and T. H. Shaffer, “Effect of tracheal smooth muscle tone on collapsibility of immature airways,” Journal of Applied Physiology, vol. 65, no. 2, pp. 863–869, 1988. View at Google Scholar · View at Scopus
  43. R. B. Penn, M. R. Wolfson, and T. H. Shaffer, “Influence of smooth muscle tone and longitudinal tension on the collapsibility of immature airways,” Pediatric Pulmonology, vol. 5, no. 3, pp. 132–138, 1988. View at Google Scholar · View at Scopus
  44. H. B. Panitch, I. Talmaciu, J. Heckman, M. R. Wolfson, and T. H. Shaffer, “Quantitative bronchoscopic assessment of airway collapsibility in newborn lamb tracheae,” Pediatric Research, vol. 43, no. 6, pp. 832–839, 1998. View at Google Scholar · View at Scopus
  45. H. B. Panitch, E. N. Keklikian, R. A. Motley, M. R. Wolfson, and D. V. Schidlow, “Effect of altering smooth muscle tone on maximal expiratory flows in patients with tracheomalacia,” Pediatric Pulmonology, vol. 9, no. 3, pp. 170–176, 1990. View at Google Scholar · View at Scopus
  46. S. M. Stick, D. J. Turner, and P. N. LeSouëf, “Lung function and bronchial challenges in infants: repeatability of histamine and comparison with methacholine challenges,” Pediatric Pulmonology, vol. 16, no. 3, pp. 177–183, 1993. View at Google Scholar · View at Scopus
  47. C. Delacourt, M. R. Benoist, S. Waernessyckle et al., “Repeatability of lung function tests during methacholine challenge in wheezy infants,” Thorax, vol. 53, no. 11, pp. 933–938, 1998. View at Google Scholar · View at Scopus
  48. J. L. Schlatter and J. L. Saulnier, “Bethanechol chloride oral solutions: stability and use in infants,” Annals of Pharmacotherapy, vol. 31, no. 3, pp. 294–296, 1997. View at Google Scholar · View at Scopus
  49. L. V. Allen Jr. and M. A. Erickson, “Stability of bethanechol chloride, pyrazinamide, quinidine sulfate, rifampin, and tetracycline hydrochloride in extemporaneously compounded oral liquids,” American Journal of Health-System Pharmacy, vol. 55, no. 17, pp. 1804–1809, 1998. View at Google Scholar · View at Scopus
  50. M. C. Nahata, V. B. Pai, and T. F. Hipple, Eds., Pediatric Drug Formulations, Harvey Whitney Books, Cincinnati, Ohio, USA, 5th edition, 2004.
  51. D. C. Plumb, Veterinary Drug Handbook, Iowa State Press, St. Paul, Minn, USA, 4th edition, 2002.
  52. Z. Hantos, B. Daroczy, B. Suki, and S. Nagy, “Low-frequency respiratory mechanical impedance in the rat,” Journal of Applied Physiology, vol. 63, no. 1, pp. 36–43, 1987. View at Google Scholar · View at Scopus
  53. Z. Hantos, B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg, “Input impedance and peripheral inhomogeneity of dog lungs,” Journal of Applied Physiology, vol. 72, no. 1, pp. 168–178, 1992. View at Google Scholar · View at Scopus
  54. B. G. Ferris Jr., J. Mead, and L. H. Opie, “Partitioning of respiratory flow resistance in man,” Journal of Applied Physiology, vol. 19, pp. 653–658, 1964. View at Google Scholar · View at Scopus