Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2013, Article ID 749860, 6 pages
http://dx.doi.org/10.1155/2013/749860
Review Article

Expiratory Flow Limitation Definition, Mechanisms, Methods, and Significance

Department of Experimental and Clinical Sciences, University of Brescia, 1a Medicina, Spedali Civili, 25123 Brescia, Italy

Received 6 November 2012; Accepted 24 December 2012

Academic Editor: Kiriakos Karkoulias

Copyright © 2013 Claudio Tantucci. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. B. Pride and J. Milic-Emili, “Lung mechanics,” in Chronic Obstructive Lung Disease, P. Calverley and N. B. Pride, Eds., pp. 135–160, Chapman Hall, London, UK, 1995. View at Google Scholar
  2. D. L. Fry and R. E. Hyatt, “Pulmonary mechanics. A unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects,” The American Journal of Medicine, vol. 29, no. 4, pp. 672–689, 1960. View at Google Scholar · View at Scopus
  3. N. B. Pride, “Ageing and changes in lung mechanics,” European Respiratory Journal, vol. 26, no. 4, pp. 563–565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. H. Tucker and H. O. Sieker, “The effect of change in body position on lung volumes and intrapulmonary gas mixing in patients with obesity, heart failure, and emphysema,” The American Review of Respiratory Disease, vol. 129, pp. 101–105, 1984. View at Google Scholar
  5. R. Castile, J. Mead, A. Jackson, M. E. Wohl, and D. Stokes, “Effects of posture on flow-volume curve configuration in normal humans,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 53, no. 5, pp. 1175–1183, 1982. View at Google Scholar · View at Scopus
  6. L. Eltayara, M. R. Becklake, C. A. Volta, and J. Milic-Emili, “Relationship between chronic dyspnea and expiratory flow limitation in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 6, pp. 1726–1734, 1996. View at Google Scholar · View at Scopus
  7. J. Boczkowski, D. Murciano, M. H. Pichot, A. Ferretti, R. Pariente, and J. Milic-Emili, “Expiratory flow limitation in stable asthmatic patients during resting breathing,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 3, pp. 752–757, 1997. View at Google Scholar · View at Scopus
  8. T. A. Wilson, J. R. Rodarte, and J. P. Butler, “Wave-speed and viscous flow limitation,” in Handobook of Physiology: The Respiratory System, P. T. Macklem and J. Mead, Eds., vol. 3, pp. 55–61, American Physiological Society, Baltimore, Md, USA, 1986. View at Google Scholar
  9. J. Mead, J. M. Turner, P. T. Macklem, and J. B. Little, “Significance of the relationship between lung recoil and maximum expiratory flow,” Journal of Applied Physiology, vol. 22, no. 1, pp. 95–108, 1967. View at Google Scholar · View at Scopus
  10. R. E. Hyatt, “The interrelationships of pressure, flow, and volume during various respiratory maneuvers in normal and emphysematous subjects,” The American Review of Respiratory Disease, vol. 83, pp. 676–683, 1961. View at Google Scholar · View at Scopus
  11. R. H. Ingram Jr. and D. P. Schilder, “Effect of gas compression on pulmonary pressure, flow, and volume relationship,” Journal of Applied Physiology, vol. 21, no. 6, pp. 1821–1826, 1966. View at Google Scholar · View at Scopus
  12. R. D. Fairshter, “Airway hysteresis in normal subjects and individuals with chronic airflow obstruction,” Journal of Applied Physiology, vol. 58, no. 5, pp. 1505–1510, 1985. View at Google Scholar · View at Scopus
  13. E. D'Angelo, E. Prandi, and J. Milic-Emili, “Dependence of maximal flow-volume curves on time course of preceding inspiration,” Journal of Applied Physiology, vol. 75, no. 3, pp. 1155–1159, 1993. View at Google Scholar · View at Scopus
  14. N. G. Koulouris, P. Valta, A. Lavoie et al., “A simple method to detect expiratory flow limitation during spontaneous breathing,” European Respiratory Journal, vol. 8, no. 2, pp. 306–313, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Valta, C. Corbeil, A. Lavoie et al., “Detection of expiratory flow limitation during mechanical ventilation,” American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 5, pp. 1311–1317, 1994. View at Google Scholar · View at Scopus
  16. V. Ninane, D. Leduc, S. A. Kafi, M. Nasser, M. Houa, and R. Sergysels, “Detection of expiratory flow limitation by manual compression of the abdominal wall,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 6, pp. 1326–1330, 2001. View at Google Scholar · View at Scopus
  17. R. L. Dellacà, P. Santus, A. Aliverti et al., “Detection of expiratory flow limitation in COPD using the forced oscillation technique,” European Respiratory Journal, vol. 23, no. 2, pp. 232–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. M. A. Calverley and N. G. Koulouris, “Flow limitation and dynamic hyperinflation: key concepts in modern respiratory physiology,” European Respiratory Journal, vol. 25, no. 1, pp. 186–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Tantucci, A. Duguet, T. Similowski, M. Zelter, J. P. Derenne, and J. Milic-Emili, “Effect of salbutamol on dynamic hyperinflation in chronic obstructive pulmonary disease patients,” European Respiratory Journal, vol. 12, no. 4, pp. 799–804, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. N. G. Koulouris, I. Dimopoulou, P. Valta, R. Finkelstein, M. G. Cosio, and J. Milic-Emili, “Detection of expiratory flow limitation during exercise in COPD patients,” Journal of Applied Physiology, vol. 82, no. 3, pp. 723–731, 1997. View at Google Scholar · View at Scopus
  21. D. E. O'Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 5, pp. 770–777, 2001. View at Google Scholar · View at Scopus
  22. P. E. Pepe and J. J. Marini, “Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect,” American Review of Respiratory Disease, vol. 126, no. 1, pp. 166–170, 1982. View at Google Scholar · View at Scopus
  23. D. E. O'Donnell and K. A. Webb, “Exertional breathlessness in patients with chronic airflow limitation: the role of lung hyperinflation,” American Review of Respiratory Disease, vol. 148, no. 5, pp. 1351–1357, 1993. View at Google Scholar · View at Scopus
  24. D. E. O'Donnell, R. Sanii, N. R. Anthonisen, and M. Younes, “Effect of dynamic airway compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease,” American Review of Respiratory Disease, vol. 135, no. 4, pp. 912–918, 1987. View at Google Scholar · View at Scopus
  25. S. Mota, P. Casan, F. Drobnic, J. Giner, J. Sanchis, and J. Milic-Emili, “Expiratory flow limitation in elite cyclists during exercise,” European Respiratory Journal, vol. 10, 1997. View at Google Scholar
  26. B. D. Johnson, W. G. Reddan, D. F. Pegelow, K. C. Seow, and J. A. Dempsey, “Flow limitation and regulation of functional residual capacity during exercise in a physically active aging population,” American Review of Respiratory Disease, vol. 143, no. 5, pp. 960–967, 1991. View at Google Scholar · View at Scopus
  27. C. de Bisschop, M. L. Marty, J. F. Tessier, P. Barberger-Gateau, J. F. Dartigues, and H. Guénard, “Expiratory flow limitation and obstruction in the elderly,” European Respiratory Journal, vol. 26, pp. 594–601, 2005. View at Publisher · View at Google Scholar
  28. L. Eltayara, H. Ghezzo, and J. Milic-Emili, “Orthopnea and tidal expiratory flow limitation in patients with stable COPD,” Chest, vol. 119, no. 1, pp. 99–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. P. T. Macklem, “Hyperinflation,” American Review of Respiratory Disease, vol. 129, no. 1, pp. 1–2, 1984. View at Google Scholar · View at Scopus
  30. S. B. Gottfierd, A. Rossi, B. D. Higgs et al., “Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure,” American Review of Respiratory Disease, vol. 131, no. 3, pp. 414–420, 1985. View at Google Scholar · View at Scopus
  31. V. Alvisi, A. Romanello, M. Badet, S. Gaillard, F. Philit, and C. Guérin, “Time course of expiratory flow limitation in COPD patients during acute respiratory failure requiring mechanical ventilation,” Chest, vol. 123, no. 5, pp. 1625–1632, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Tantucci, M. Ellaffi, A. Duguet et al., “Dynamic hyperinflation and flow limitation during methacholine-induced bronchoconstriction in asthma,” European Respiratory Journal, vol. 14, no. 2, pp. 295–301, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Baydur and J. Milic-Emili, “Expiratory flow limitation during spontaneous breathing: comparison of patients with restrictive and obstructive respiratory disorders,” Chest, vol. 112, no. 4, pp. 1017–1023, 1997. View at Google Scholar · View at Scopus
  34. A. Ferretti, P. Giampiccolo, A. Cavalli, J. Milic-Emili, and C. Tantucci, “Expiratory flow limitation and orthopnea in massively obese subjects,” Chest, vol. 119, no. 5, pp. 1401–1408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Duguet, C. Tantucci, O. Lozinguez et al., “Expiratory flow limitation as a determinant of orthopnea in acute left heart failure,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 690–700, 2000. View at Publisher · View at Google Scholar · View at Scopus