Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2014 (2014), Article ID 581738, 11 pages
http://dx.doi.org/10.1155/2014/581738
Research Article

Effects of Inactivated Bordetella pertussis on Phosphodiesterase in the Lung of Ovalbumin Sensitized and Challenged Rats

1Zhejiang Respiratory Drugs Research Laboratory of SFDA of China, School of Medicine, Zhejiang University, Hangzhou 310058, China
2Clinical College of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
3First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310000, China
4Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
5Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China

Received 28 February 2014; Accepted 17 June 2014; Published 9 July 2014

Academic Editor: Andrew Sandford

Copyright © 2014 Ya-Juan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Reed, “Pertussis sensitization as an animal model for the abnormal bronchial sensitivity of asthma,” Yale Journal of Biology and Medicine, vol. 40, no. 5, pp. 507–521, 1968. View at Google Scholar · View at Scopus
  2. S. Waserman, R. Olivenstein, P. Renzi, L. J. Xu, and J. G. Martin, “The relationship between late asthmatic responses and antigen-specific immunoglobulin,” Journal of Allergy and Clinical Immunology, vol. 90, no. 4 I, pp. 661–669, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. H. O. Heuer, B. Wenz, H. Jennewein, and K. Urich, “Characterisation of a novel airway late phase model in the sensitized guinea pig which uses silica and Bordetella pertussis as adjuvant for sensitization,” European Journal of Pharmacology, vol. 317, no. 2-3, pp. 361–368, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. I. C. Chang and R. Y. Gottshall, “Sensitization to ragweed pollen in Bordetella pertussis infected or vaccine injected mice,” Journal of Allergy and Clinical Immunology, vol. 54, no. 1, pp. 20–24, 1974. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Dong, M. J. K. Selgrade, and M. I. Gilmour, “Systemic administration of Bordetella pertussis enhances pulmonary sensitization to house dust mite in juvenile rats,” Toxicological Sciences, vol. 72, no. 1, pp. 113–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Tang, Y. Song, J. Chen, and P. Wang, “Upregulation of phosphodiesterase-4 in the lung of allergic rats,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 8, pp. 823–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Conti, W. Richter, C. Mehats, G. Livera, J. Park, and C. Jin, “Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5493–5496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Giembycz, “Development status of second generation PDE4 inhibitors for asthma and COPD: the story so far,” Monaldi Archives for Chest Disease, vol. 57, no. 1, pp. 48–64, 2002. View at Google Scholar · View at Scopus
  9. C. Méhats, S.-C. Jin, J. Wahlstrom, E. Law, D. T. Umetsu, and M. Conti, “PDE4D plays a critical role in the control of airway smooth muscle contraction,” The FASEB Journal, vol. 17, no. 13, pp. 1831–1841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Hansen, S.-. C. Jin, D. T. Umetsu, and M. Conti, “Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6751–6756, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. S. P. Singh, E. G. Barrett, R. Kalra et al., “Prenatal cigarette smoke decreases lung cAMP and increases airway hyperresponsiveness,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 3, pp. 342–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. M. Xie, J. Q. Chen, W. H. Shen, and R. L. Bian, “Correlative changes of interferon-γ and interleukin-4 between cortical layer and pulmonary airway of sensitized rats,” Acta Pharmacologica Sinica, vol. 23, no. 3, pp. 248–252, 2002. View at Google Scholar · View at Scopus
  13. Q. Xie, J. Chen, W. Shen, Q. Yang, and R. Bian, “Effects of cyclosporin A by aerosol on airway hyperresponsiveness and inflammation in guinea pigs,” Acta Pharmacologica Sinica, vol. 23, no. 3, pp. 243–247, 2002. View at Google Scholar · View at Scopus
  14. Y. H. Song, J. Q. Chen, and H. L. Zhou, “Cyclic nucleotides phosphodiesterase activity in a rat lung model of asthma,” Zhejiang Da Xue Xue Bao Yi Xue Ban, vol. 31, pp. 127–130, 2002 (Chinese). View at Google Scholar
  15. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Clausen, J. Munoz, and R. K. Bergman, “Lymphocytosis and histamine sensitization of mice by fractions from Bordetella pertussis,” Journal of Bacteriology, vol. 96, no. 5, pp. 1484–1487, 1968. View at Google Scholar · View at Scopus
  17. C. R. Clausen, J. Munoz, and R. K. Bergman, “A reaginic type of antibody stimulated by extracts of Bordetella pertussis in inbred strains of mice,” Journal of Immunology, vol. 104, no. 2, pp. 312–319, 1970. View at Google Scholar · View at Scopus
  18. D. S. J. Lindsay, R. Parton, and A. C. Wardlaw, “Adjuvant effect of pertussis toxin on the production of anti-ovalbumin IgE in mice and lack of direct correlation between PCA and ELISA,” International Archives of Allergy and Immunology, vol. 105, no. 3, pp. 281–288, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. S. B. Lehrer, “Role of mouse IgG and IgE homocytotropic antibodies in passive cutaneous anaphylaxis,” Immunology, vol. 32, no. 4, pp. 507–511, 1977. View at Google Scholar · View at Scopus
  20. T. E. Bartell and W. W. Busse, “Effect of Bordetella pertussis vaccination in mice and the isolated tracheal response to isoprenaline,” Allergy, vol. 35, no. 4, pp. 291–296, 1980. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Giembycz, “Phosphodiesterase 4 and tolerance to β2-adrenoceptor agonists in asthma,” Trends in Pharmacological Sciences, vol. 17, no. 9, pp. 331–336, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Xiang, F. Naro, M. Zoudilova, S.-L. C. Jin, M. Conti, and B. Kobilka, “Phosphodiesterase 4D is required for β2 adrenoceptor subtype-specific signaling in cardiac myocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 909–914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. M. Schreurs and F. P. Nijkamp, “Contribution of bacterial cell wall compounds to airway hyperreactivity,” European Journal of Respiratory Diseases, vol. 65, no. 135, pp. 164–167, 1984. View at Google Scholar · View at Scopus
  24. A. Imaizumi, J. Lefort, D. Leduc, A. Lellouch-Tubiana, and B. B. Vargaftig, “Pertussis toxin induces bronchopulmonary hyperresponsiveness in guinea-pigs while antagonizing the effects of formyl-L-methionyl-L-leucyl-L-phenylalanine,” European Journal of Pharmacology, vol. 212, no. 2-3, pp. 177–186, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. J. G. Castillo, P. M. Gamboa, B. E. Garcia, and A. Oehling, “Effect of ketotifen on phosphodiesterase activity from asthmatic individuals,” Allergologia et Immunopathologia, vol. 18, no. 4, pp. 197–201, 1990. View at Google Scholar · View at Scopus
  26. I. C. Crocker, M. K. Church, S. E. Ohia, and R. G. Townley, “Beclomethasone decreases elevations in phosphodiesterase activity in human T lymphocytes,” International Archives of Allergy and Immunology, vol. 121, no. 2, pp. 151–160, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Hanifin and S. C. Chan, “Monocyte phosphodiesterase abnormalities and dysregulation of lymphocyte function in atopic dermatitis,” Journal of Investigative Dermatology, vol. 105, S84, no. 1, p. S88, 1995. View at Google Scholar · View at Scopus
  28. S. Mue, T. Ise, S. Shibahara, M. Takahashi, and Y. Ono, “Leukocyte cyclic 3′,5′ nucleotide phosphodiesterase activity in human bronchial asthma,” Annals of Allergy, vol. 37, no. 3, pp. 201–207, 1976. View at Google Scholar · View at Scopus
  29. T. Sawai, K. Ikai, and M. Uehara, “Cyclic adenosine monophosphate phosphodiesterase activity in peripheral blood mononuclear leucocytes from patients with atopic dermatitis: correlation with respiratory atopy,” British Journal of Dermatology, vol. 138, no. 5, pp. 846–848, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. I. H. Coulson, S. N. Duncan, and C. A. Holden, “Peripheral blood mononuclear leukocyte cyclic adenosine monophosphate specific phosphodiesterase activity in childhood atopic dermatitis,” British Journal of Dermatology, vol. 120, no. 5, pp. 607–612, 1989. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Gantner, H. Tenor, V. Gekeler, C. Schudt, A. Wendel, and A. Hatzelmann, “Phosphodiesterase profiles of highly purified human peripheral blood leukocyte populations from normal and atopic individuals: a comparative study,” Journal of Allergy and Clinical Immunology, vol. 100, no. 4, pp. 527–535, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. L. J. Landells, D. Spina, J. E. Souness, B. J. O'Connor, and C. P. Page, “A biochemical and functional assessment of monocyte phosphodiesterase activity in healthy and asthmatic subjects,” Pulmonary Pharmacology and Therapeutics, vol. 13, no. 5, pp. 231–239, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. L. J. Landells, C. M. Szilagy, N. A. Jones et al., “Identification and quantification of phosphodiesterase 4 subtypes in CD4 and CD8 lymphocytes from healthy and asthmatic subjects,” British Journal of Pharmacology, vol. 133, no. 5, pp. 722–729, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. C. D. Manning, M. Burman, S. B. Christensen et al., “Suppression of human inflammatory cell function by subtype-selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B,” The British Journal of Pharmacology, vol. 128, no. 7, pp. 1393–1398, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Ma, P. Wu, R. W. Egan, M. M. Billah, and P. Wang, “Phosphodiesterase 4B gene transcription is activated by lipopolysaccharide and inhibited by interleukin-10 in human monocytes,” Molecular Pharmacology, vol. 55, no. 1, pp. 50–57, 1999. View at Google Scholar · View at Scopus
  36. S.-. C. Jin and M. Conti, “Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7628–7633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Wang, P. Wu, K. M. Ohleth, R. W. Egan, and M. M. Billah, “Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils,” Molecular Pharmacology, vol. 56, no. 1, pp. 170–174, 1999. View at Google Scholar · View at Scopus
  38. A. Robichaud, P. B. Stamatiou, S.-L. C. Jin et al., “Deletion of phosphodiesterase 4D in mice shortens α2-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis,” The Journal of Clinical Investigation, vol. 110, no. 7, pp. 1045–1052, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Hakonarson, “Role of FLAP and PDE4D in myocardial infarction and stroke: target discovery and future treatment options,” Current Treatment Options in Cardiovascular Medicine, vol. 8, no. 3, pp. 183–192, 2006. View at Publisher · View at Google Scholar · View at Scopus