Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008 (2008), Article ID 256251, 10 pages
http://dx.doi.org/10.1155/2008/256251
Review Article

Mitochondria, PPARs, and Cancer: Is Receptor-Independent Action of PPAR Agonists a Key?

Department of Laboratory Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy

Received 26 March 2008; Revised 27 May 2008; Accepted 18 June 2008

Academic Editor: Dipak Panigrahy

Copyright © 2008 Roberto Scatena et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at PubMed
  2. B. Desvergne and W. Wahli, “Peroxisome proliferators-activated receptors: nuclear control of metabolism,” Endocrinology Review, vol. 20, no. 5, pp. 649–688, 1999. View at Publisher · View at Google Scholar
  3. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar · View at PubMed
  4. C.-H. Lee, P. Olson, and R. M. Evans, “Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors,” Endocrinology, vol. 144, no. 6, pp. 2201–2207, 2003. View at Publisher · View at Google Scholar
  5. R. M. Evans, G. D. Barish, and Y.-X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at PubMed
  6. Z. Nahlé, “PPAR trilogy from metabolism to cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 4, pp. 397–402, 2004. View at Publisher · View at Google Scholar
  7. L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 726–741, 2006. View at Publisher · View at Google Scholar · View at PubMed
  8. L. Michalik and W. Wahli, “Involvement of PPAR nuclear receptors in tissue injury and wound repair,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 598–606, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. V. Darley-Usmar, “The powerhouse takes control of the cell; the role of mitochondria in signal transduction,” Free Radical Biology & Medicine, vol. 37, no. 6, pp. 753–754, 2004. View at Publisher · View at Google Scholar · View at PubMed
  10. R. Scatena, P. Bottoni, G. Botta, G. E. Martorana, and B. Giardina, “The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic,” American Journal of Physiology, vol. 293, no. 1, pp. C12–C21, 2007. View at Publisher · View at Google Scholar · View at PubMed
  11. K. Garber, “Energy deregulation: licensing tumors to grow,” Science, vol. 312, no. 5777, pp. 1158–1159, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. R. Moreno-Sánchez, S. Rodríguez-Enríquez, A. Marín-Hernández, and E. Saavedra, “Energy metabolism in tumor cells,” The FEBS Journal, vol. 274, no. 6, pp. 1393–1418, 2007. View at Publisher · View at Google Scholar · View at PubMed
  13. J.-W. Kim and C. V. Dang, “Cancer's molecular sweet tooth and the Warburg effect,” Cancer Research, vol. 66, no. 18, pp. 8927–8930, 2006. View at Publisher · View at Google Scholar · View at PubMed
  14. E. I. Chen, J. Hewel, J. S. Krueger et al., “Adaptation of energy metabolism in breast cancer brain metastases,” Cancer Research, vol. 67, no. 4, pp. 1472–1486, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. R. Scatena, G. Nocca, P. De Sole et al., “Bezafibrate as differentiating factor of human myeloid leukemia cells,” Cell Death and Differentiation, vol. 6, no. 8, pp. 781–787, 1999. View at Publisher · View at Google Scholar · View at PubMed
  16. S. S. Palakurthi, H. Aktas, L. M. Grubissich, R. M. Mortensen, and J. A. Halperin, “Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor γ and mediated by inhibition of translation initiation,” Cancer Research, vol. 61, no. 16, pp. 6213–6218, 2001. View at Google Scholar
  17. S. J. Baek, L. C. Wilson, L. C. Hsi, and T. E. Eling, “Troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, selectively induces the early growth response-1 gene independently of PPARγ: a novel mechanism for its anti-tumorigenic activity,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5845–5853, 2003. View at Publisher · View at Google Scholar · View at PubMed
  18. R. Scatena, P. Bottoni, F. Vincenzoni et al., “Bezafibrate induces a mitochondrial derangement in human cell lines: a PPAR-independent mechanism for a peroxisome proliferator,” Chemical Research in Toxicology, vol. 16, no. 11, pp. 1440–1447, 2003. View at Publisher · View at Google Scholar · View at PubMed
  19. F. S. Harman, C. J. Nicol, H. E. Marin, J. M. Ward, F. J. Gonzalez, and J. M. Peters, “Peroxisome proliferator-activated receptor-δ attenuates colon carcinogenesis,” Nature Medicine, vol. 10, no. 5, pp. 481–483, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. R. A. Gupta, D. Wang, S. Katkuri, H. Wang, S. K. Dey, and R. N. DuBois, “Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth,” Nature Medicine, vol. 10, no. 3, pp. 245–247, 2004. View at Publisher · View at Google Scholar · View at PubMed
  21. S. C. Sweetman, Ed., Martindale: The Complete Drug Reference, S. C. Sweetman, Ed., Pharmaceutical Press, London, UK, 35th edition, 2005.
  22. M. F. Perutz and C. Poyart, “Bezafibrate lowers oxygen affinity of haemoglobin,” The Lancet, vol. 2, no. 8355, pp. 881–882, 1983. View at Publisher · View at Google Scholar
  23. R. Scatena, G. Nocca, I. Messana et al., “Effects of gemfibrozil on the oxygen transport properties of erythrocytes,” British Journal of Clinical Pharmacology, vol. 39, no. 1, pp. 25–30, 1995. View at Google Scholar
  24. D. S. Chance and M. K. McIntosh, “Hypolipidemic agents alter hepatic mitochondrial respiration in vitro,” Comparative Biochemistry and Physiology Part C, vol. 111, no. 2, pp. 317–323, 1995. View at Publisher · View at Google Scholar
  25. J. Youssef and M. Badr, “Extraperoxisomal targets of peroxisome proliferators: mitochondrial, microsomal, and cytosolic effects. Implications for health and disease,” Critical Reviews in Toxicology, vol. 28, no. 1, pp. 1–33, 1998. View at Publisher · View at Google Scholar
  26. S. Zhou and K. B. Wallace, “The effect of peroxisome proliferators on mitochondrial bioenergetics,” Toxicological Sciences, vol. 48, no. 1, pp. 82–89, 1999. View at Publisher · View at Google Scholar
  27. A. Szewczyk and L. Wojtczak, “Mitochondria as a pharmacological target,” Pharmacological Reviews, vol. 54, no. 1, pp. 101–127, 2002. View at Publisher · View at Google Scholar
  28. R. Scatena, G. Nocca, P. De Sole, R. Fresu, C. Zuppi, and B. Giardina, “The priming effect of gemfibrozil on reactive oxygen metabolism of phagocytic leucocytes. An intriguing side effect,” Clinica Chimica Acta, vol. 266, no. 2, pp. 173–183, 1997. View at Publisher · View at Google Scholar
  29. J. K. Reddy and T. Hashimoto, “Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system,” Annual Review of Nutrition, vol. 21, pp. 193–230, 2001. View at Publisher · View at Google Scholar · View at PubMed
  30. A. L. Lehninger, D. L. Nelson, and M. M. Cox, Principles of Biochemistry, Worth, New York, NY, USA, 2000.
  31. S. Raha, A. T. Myint, L. Johnstone, and B. H. Robinson, “Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase,” Free Radical Biology & Medicine, vol. 32, no. 5, pp. 421–430, 2002. View at Publisher · View at Google Scholar
  32. V. Adam-Vizi and C. Chinopoulos, “Bioenergetics and the formation of mitochondrial reactive oxygen species,” Trends in Pharmacological Sciences, vol. 27, no. 12, pp. 639–645, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. R. Scatena, P. Bottoni, G. E. Martorana et al., “Mitochondrial respiratory chain dysfunction, a non-receptor-mediated effect of synthetic PPAR-ligands: biochemical and pharmacological implications,” Biochemical and Biophysical Research Communications, vol. 319, no. 3, pp. 967–973, 2004. View at Publisher · View at Google Scholar · View at PubMed
  34. B. Brunmair, K. Staniek, F. Gras et al., “Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?,” Diabetes, vol. 53, no. 4, pp. 1052–1059, 2004. View at Publisher · View at Google Scholar
  35. R. Scatena, G. E. Martorana, P. Bottoni, and B. Giardina, “Mitochondrial dysfunction by synthetic ligands of peroxisome proliferator activated receptors (PPARs),” IUBMB Life, vol. 56, no. 8, pp. 477–482, 2004. View at Publisher · View at Google Scholar · View at PubMed
  36. R. Scatena, P. Bottoni, G. E. Martorana et al., “Mitochondria, ciglitazone and liver: a neglected interaction in biochemical pharmacology,” European Journal of Pharmacology, vol. 567, no. 1-2, pp. 50–58, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. A. Y. Y. Cheng and I. G. Fantus, “Thiazolidinedione-induced congestive heart failure,” Annals of Pharmacotherapy, vol. 38, no. 5, pp. 817–820, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. M. Chojkier, “Troglitazone and liver injury: in search of answers,” Hepatology, vol. 41, no. 2, pp. 237–346, 2005. View at Publisher · View at Google Scholar · View at PubMed
  39. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” The New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007. View at Publisher · View at Google Scholar · View at PubMed
  40. A. M. Lincoff, K. Wolski, S. J. Nicholls, and S. E. Nissen, “Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1180–1188, 2007. View at Publisher · View at Google Scholar · View at PubMed
  41. S. Nadanaciva, J. A. Dykens, A. Bernal, R. A. Capaldi, and Y. Will, “Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration,” Toxicology and Applied Pharmacology, vol. 223, no. 3, pp. 277–287, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. J. R. Colca, W. G. McDonald, D. J. Waldon et al., “Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe,” American Journal of Physiology, vol. 286, no. 2, pp. E252–E260, 2004. View at Publisher · View at Google Scholar · View at PubMed
  43. S. E. Wiley, A. N. Murphy, S. A. Ross, P. van der Geer, and J. E. Dixon, “MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 13, pp. 5318–5323, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. M. L. Paddock, S. E. Wiley, H. L. Axelrod et al., “MitoNEET is a uniquely folded 2Fe-2S outer mitochondrial membrane protein stabilized by pioglitazone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 36, pp. 14342–14347, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. B. Halliwell and J. M. C. Cutteridge, Free Radical in Biology and Medicine, Oxford University Press, New York, NY, USA, 1986.
  46. Z. Wu, P. Puigserver, U. Andersson et al., “Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124, 1999. View at Publisher · View at Google Scholar
  47. A. L. Hevener, W. He, Y. Barak et al., “Muscle-specific Pparg deletion causes insulin resistance,” Nature Medicine, vol. 9, no. 12, pp. 1491–1497, 2003. View at Publisher · View at Google Scholar · View at PubMed
  48. W. He, Y. Barak, A. Hevener et al., “Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15712–15717, 2003. View at Publisher · View at Google Scholar · View at PubMed
  49. T. C. Leone, J. J. Lehman, B. N. Finck et al., “PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis,” PLoS Biology, vol. 3, no. 4, p. e101, 2005. View at Publisher · View at Google Scholar · View at PubMed
  50. Y. Cai, E. L. Appelkvist, and J. W. DePierre, “Hepatic oxidative stress and related defenses during treatment of mice with acetylsalicylic acid and other peroxisome proliferators,” Journal of Biochemical Toxicology, vol. 10, no. 2, pp. 87–94, 1995. View at Publisher · View at Google Scholar
  51. M. L. O'Brien, T. P. Twaroski, M. L. Cunningham, H. P. Glauert, and B. T. Spear, “Effects of peroxisome proliferators on antioxidant enzymes and antioxidant vitamins in rats and hamsters,” Toxicological Sciences, vol. 60, no. 2, pp. 271–278, 2001. View at Publisher · View at Google Scholar
  52. K. Asayama, T. Nakane, K. Dobashi et al., “Effect of obesity and troglitazone on expression of two glutathione peroxidases: cellular and extracellular types in serum, kidney and adipose tissue,” Free Radical Research, vol. 34, no. 4, pp. 337–347, 2001. View at Publisher · View at Google Scholar
  53. P. K. Narayanan, T. Hart, F. Elcock et al., “Troglitazone-induced intracellular oxidative stress in rat hepatoma cells: a flow cytometric assessment,” Cytometry, Part A, vol. 52, no. 1, pp. 28–35, 2003. View at Google Scholar
  54. A. Gumieniczek, “Effect of the new thiazolidinedione-pioglitazone on the development of oxidative stress in liver and kidney of diabetic rabbits,” Life Sciences, vol. 74, no. 5, pp. 553–562, 2003. View at Publisher · View at Google Scholar
  55. P. T. Schumacker, “Reactive oxygen species in cancer cells: live by the sword, die by the sword,” Cancer Cell, vol. 10, no. 3, pp. 175–176, 2006. View at Publisher · View at Google Scholar · View at PubMed
  56. Y. Chen, E. McMillan-Ward, J. Kong, S. J. Israels, and S. B. Gibson, “Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species,” Journal of Cell Science, vol. 120, no. 23, pp. 4155–4166, 2007. View at Publisher · View at Google Scholar · View at PubMed
  57. H. P. Indo, M. Davidson, H.-C. Yen et al., “Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage,” Mitochondrion, vol. 7, no. 1-2, pp. 106–118, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. G. J. Kim, G. M. Fiskum, and W. F. Morgan, “A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability,” Cancer Research, vol. 66, no. 21, pp. 10377–10383, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. B. Halliwell, “Oxidative stress and cancer: have we moved forward?,” Biochemical Journal, vol. 401, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at PubMed
  60. K. Ishikawa, K. Takenaga, M. Akimoto et al., “ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis,” Science, vol. 320, no. 5876, pp. 661–664, 2008. View at Publisher · View at Google Scholar · View at PubMed
  61. G. D. Lu, H.-M. Shen, C. N. Ong, and M. C. M. Chung, “Anticancer effects of aloe-emodin on HepG2 cells: cellular and proteomic studies,” Proteomics-Clinical Applications, vol. 1, no. 4, pp. 410–419, 2007. View at Publisher · View at Google Scholar
  62. R. Scatena, P. Bottoni, and B. Giardina, “Modulation of cancer cell line differentiation: a neglected proteomic analysis with potential implications in pathophysiology, diagnosis, prognosis, and therapy of cancer,” Proteomics-Clinical Applications, vol. 2, no. 2, pp. 229–237, 2008. View at Publisher · View at Google Scholar
  63. T. Ozben, “Oxidative stress and apoptosis: impact on cancer therapy,” Journal of Pharmaceutical Sciences, vol. 96, no. 9, pp. 2181–2196, 2007. View at Publisher · View at Google Scholar · View at PubMed
  64. Y. Chen, P. Jungsuwadee, M. Vore, D. A. Butterfield, and D. K. St. Clair, “Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues,” Molecular Interventions, vol. 7, no. 3, pp. 147–156, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. R. H. Engel and A. M. Evens, “Oxidative stress and apoptosis: a new treatment paradigm in cancer,” Frontiers in Bioscience, vol. 11, no. 1, pp. 300–312, 2006. View at Publisher · View at Google Scholar
  66. P. Sertznig, M. Seifert, W. Tilgen, and J. Reichrath, “Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer,” Journal of Cellular Physiology, vol. 212, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at PubMed
  67. M. H. Frick, O. Elo, K. Haapa et al., “Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease,” The New England Journal of Medicine, vol. 317, no. 20, pp. 1237–1245, 1987. View at Google Scholar
  68. J. K. Huttunen, O. P. Heinonen, V. Manninen et al., “The Helsinki Heart Study: an 8.5-year safety and mortality follow-up,” Journal of Internal Medicine, vol. 235, no. 1, pp. 31–39, 1994. View at Google Scholar
  69. L. Tenkanen, M. Mänttäri, P. T. Kovanen, H. Virkkunen, and V. Manninen, “Gemfibrozil in the treatment of dyslipidemia: an 18-year mortality follow-up of the Helsinki Heart Study,” Archives of Internal Medicine, vol. 166, no. 7, pp. 743–748, 2006. View at Publisher · View at Google Scholar · View at PubMed
  70. G. J. Murphy and J. C. Holder, “PPAR-γ agonists: therapeutic role in diabetes, inflammation and cancer,” Trends in Pharmacological Sciences, vol. 21, no. 12, pp. 469–474, 2000. View at Publisher · View at Google Scholar
  71. L. Kopelovich, J. R. Fay, R. I. Glazer, and J. A. Crowell, “Peroxisome proliferator-activated receptor modulators as potential chemopreventive agents,” Molecular Cancer Therapeutics, vol. 1, no. 5, pp. 357–363, 2002. View at Google Scholar
  72. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Publisher · View at Google Scholar · View at PubMed
  73. G. D. Demetri, C. D. M. Fletcher, E. Mueller et al., “Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3951–3956, 1999. View at Publisher · View at Google Scholar
  74. D. Panigrahy, A. Kaipainen, S. Huang et al., “PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 985–990, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. A. Kaipainen, M. W. Kieran, S. Huang et al., “PPARα deficiency in inflammatory cells suppresses tumor growth,” PLoS ONE, vol. 2, no. 2, p. e260, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. D. L. Feinstein, A. Spagnolo et al., “Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key?,” Biochemical Pharmacology, vol. 70, no. 2, pp. 177–188, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. J.-R. Weng, C.-Y. Chen, J. J. Pinzone, M. D. Ringel, and C.-S. Chen, “Beyond peroxisome proliferator-activated receptor γ signaling: the multi-facets of the antitumor effect of thiazolidinediones,” Endocrine-Related Cancer, vol. 13, no. 2, pp. 401–413, 2006. View at Publisher · View at Google Scholar · View at PubMed
  78. P. Hau, L. Kunz-Schughart, U. Bogdahn et al., “Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas—a phase II study,” Oncology, vol. 73, no. 1-2, pp. 21–25, 2008. View at Publisher · View at Google Scholar · View at PubMed
  79. J. M. Seargent, E. A. Yates, and J. H. Gill, “GW9662, a potent antagonist of PPARγ, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARγ agonist rosiglitazone, independently of PPARγ activation,” British Journal of Pharmacology, vol. 143, no. 8, pp. 933–937, 2004. View at Publisher · View at Google Scholar · View at PubMed
  80. A. Galli, E. Ceni, D. W. Crabb et al., “Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARγ independent mechanisms,” Gut, vol. 53, no. 11, pp. 1688–1697, 2004. View at Publisher · View at Google Scholar · View at PubMed
  81. D. M. Ray, F. Akbiyik, and R. P. Phipps, “The peroxisome proliferator-activated receptor γ (PPARγ) ligands 15-deoxy-Δ12,14-prostaglandin J2 and ciglitazone induce human B lymphocyte and B cell lymphoma apoptosis by PPARγ-independent mechanisms,” The Journal of Immunology, vol. 177, no. 8, pp. 5068–5076, 2006. View at Google Scholar
  82. V. R. Fantin, J. St-Pierre, and P. Leder, “Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance,” Cancer Cell, vol. 9, no. 6, pp. 425–434, 2006. View at Publisher · View at Google Scholar · View at PubMed
  83. P. Bottoni, B. Giardina, G. E. Martorana et al., “A two-dimensional electrophoresis preliminary approach to human hepatocarcinoma differentiation induced by PPAR-agonists,” Journal of Cellular and Molecular Medicine, vol. 9, no. 2, pp. 462–467, 2005. View at Publisher · View at Google Scholar
  84. A. M. Magro, A. D. Magro, C. Cunningham, and M. R. Miller, “Down-regulation of vinculin upon MK886-induced apoptosis in LN18 glioblastoma cells,” Neoplasma, vol. 54, no. 6, pp. 517–526, 2007. View at Google Scholar
  85. A. Spagnolo, E. N. Grant, R. Glick, T. Lichtor, and D. L. Feinstein, “Differential effects of PPARγ agonists on the metabolic properties of gliomas and astrocytes,” Neuroscience Letters, vol. 417, no. 1, pp. 72–77, 2007. View at Publisher · View at Google Scholar · View at PubMed
  86. K. Schultze, B. Böck, A. Eckert et al., “Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and Survivin,” Apoptosis, vol. 11, no. 9, pp. 1503–1512, 2006. View at Publisher · View at Google Scholar · View at PubMed
  87. N. Strakova, J. Ehrmann, J. Bartos, J. Malikova, J. Dolezel, and Z. Kolar, “Peroxisome proliferator-activated receptors (PPAR) agonists affect cell viability, apoptosis and expression of cell cycle related proteins in cell lines of glial brain tumors,” Neoplasma, vol. 52, no. 2, pp. 126–136, 2005. View at Google Scholar
  88. D.-C. Liu, C.-B. Zang, H.-Y. Liu, K. Possinger, S.-G. Fan, and E. Elstner, “A novel PPAR alpha/gamma dual agonist inhibits cell growth and induces apoptosis in human glioblastoma T98G cells,” Acta Pharmacologica Sinica, vol. 25, no. 10, pp. 1312–1319, 2004. View at Google Scholar
  89. R. Morosetti, T. Servidei, M. Mirabella et al., “The PPARγ ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis and differentiation of human glioblastoma cell lines,” International Journal of Oncology, vol. 25, no. 2, pp. 493–502, 2004. View at Google Scholar
  90. N. Strakova, J. Ehrmann, P. Dzubak, J. Bouchal, and Z. Kolar, “The synthetic ligand of peroxisome proliferator-activated receptor-γ ciglitazone affects human glioblastoma cell lines,” Journal of Pharmacology and Experimental Therapeutics, vol. 309, no. 3, pp. 1239–1247, 2004. View at Publisher · View at Google Scholar · View at PubMed
  91. E. Benedetti, R. Galzio, B. Cinque et al., “Biomolecular characterization of human glioblastoma cells in primary cultures: differentiating and antiangiogenic effects of natural and synthetic PPARγ agonists,” Journal of Cellular Physiology. In press. View at Publisher · View at Google Scholar · View at PubMed
  92. C.-J. Yao, G.-M. Lai, C.-F. Chan, A.-L. Cheng, Y.-Y. Yang, and S.-E. Chuang, “Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone,” International Journal of Cancer, vol. 118, no. 3, pp. 773–779, 2006. View at Publisher · View at Google Scholar · View at PubMed
  93. R. Ragno, A. Mai, S. Massa et al., “3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a new class of synthetic histone deacetylase inhibitors. 3. Discovery of novel lead compounds through structure-based drug design and docking studies,” Journal of Medicinal Chemistry, vol. 47, no. 6, pp. 1351–1359, 2004. View at Publisher · View at Google Scholar · View at PubMed
  94. A. Mai, S. Massa, S. Valente et al., “Aroyl-pyrrolyl hydroxyamides: influence of pyrrole C4-phenylacetyl substitution on histone deacetylase inhibition,” ChemMedChem, vol. 1, no. 2, pp. 225–237, 2006. View at Publisher · View at Google Scholar · View at PubMed