Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008 (2008), Article ID 352437, 10 pages
http://dx.doi.org/10.1155/2008/352437
Review Article

Role of Peroxisome Proliferator-Activated Receptor Alpha in the Control of Cyclooxygenase 2 and Vascular Endothelial Growth Factor: Involvement in Tumor Growth

Departamento de Biología Molecular, Centro de Biología Molecular “Severo Ochoa” UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received 11 March 2008; Revised 20 June 2008; Accepted 24 June 2008

Academic Editor: Dipak Panigrahy

Copyright © 2008 Raquel Grau et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar
  2. J. C. Corton, S. P. Anderson, and A. Stauber, “Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators,” Annual Review of Pharmacology and Toxicology, vol. 40, pp. 491–518, 2000. View at Publisher · View at Google Scholar
  3. L. Michalik and W. Wahli, “Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions,” Current Opinion in Biotechnology, vol. 10, no. 6, pp. 564–570, 1999. View at Publisher · View at Google Scholar
  4. K. Schoonjans, B. Staels, and J. Auwerx, “The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation,” Biochimica et Biophysica Acta, vol. 1302, no. 2, pp. 93–109, 1996. View at Publisher · View at Google Scholar
  5. W. Wahli, O. Braissant, and B. Desvergne, “Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more,” Chemistry and Biology, vol. 2, no. 5, pp. 261–266, 1995. View at Google Scholar
  6. R. A. Daynes and D. C. Jones, “Emerging roles of PPARs in inflammation and immunity,” Nature Reviews Immunology, vol. 2, no. 10, pp. 748–759, 2002. View at Publisher · View at Google Scholar
  7. L. Gelman, J.-C. Fruchart, and J. Auwerx, “An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer,” Cellular and Molecular Life Sciences, vol. 55, no. 6-7, pp. 932–943, 1999. View at Google Scholar
  8. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Google Scholar
  9. J.-C. Fruchart, P. Duriez, and B. Staels, “Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis,” Current Opinion in Lipidology, vol. 10, no. 3, pp. 245–257, 1999. View at Google Scholar
  10. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar
  11. D. Auboeuf, J. Rieusset, L. Fajas et al., “Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-a in humans: no alteration in adipose tissue of obese and NIDDM patients,” Diabetes, vol. 46, no. 8, pp. 1319–1327, 1997. View at Google Scholar
  12. I. Inoue, K. Shino, S. Noji, T. Awata, and S. Katayama, “Expression of peroxisome proliferator-activated receptor α (PPARα) in primary cultures of human vascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 246, no. 2, pp. 370–374, 1998. View at Publisher · View at Google Scholar
  13. T. C. Leone, C. J. Weinheimer, and D. P. Kelly, “A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7473–7478, 1999. View at Publisher · View at Google Scholar
  14. T. M. Willson, P. J. Brown, D. D. Sternbach, and B. R. Henke, “The PPARs: from orphan receptors to drug discovery,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 527–550, 2000. View at Publisher · View at Google Scholar
  15. J. M. Lehmann, J. M. Lenhard, B. B. Oliver, G. M. Ringold, and S. A. Kliewer, “Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs,” The Journal of Biological Chemistry, vol. 272, no. 6, pp. 3406–3410, 1997. View at Publisher · View at Google Scholar
  16. H. E. Xu, M. H. Lambert, V. G. Montana et al., “Molecular recognition of fatty acids by peroxisome proliferator-activated receptors,” Molecular Cell, vol. 3, no. 3, pp. 397–403, 1999. View at Publisher · View at Google Scholar
  17. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar
  18. S. A. Kliewer, S. S. Sundseth, S. A. Jones et al., “Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors a and ?,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4318–4323, 1997. View at Publisher · View at Google Scholar
  19. K. Yu, W. Bayona, C. B. Kallen et al., “Differential activation of peroxisome proliferator-activated receptors by eicosanoids,” The Journal of Biological Chemistry, vol. 270, no. 41, pp. 23975–23983, 1995. View at Publisher · View at Google Scholar
  20. L. A. Moraes, L. Piqueras, and D. Bishop-Bailey, “Peroxisome proliferator-activated receptors and inflammation,” Pharmacology and Therapeutics, vol. 110, no. 3, pp. 371–385, 2006. View at Publisher · View at Google Scholar
  21. P. R. Devchand, H. Keller, J. M. Peters, M. Vazquez, F. J. Gonzalez, and W. Wahli, “The PPARα-leukotriene B4 pathway to inflammation control,” Nature, vol. 384, no. 6604, pp. 39–43, 1996. View at Publisher · View at Google Scholar
  22. P. C. Calder, “n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases,” American Journal of Clinical Nutrition, vol. 83, no. 6, pp. 1505S–1519S, 2006. View at Google Scholar
  23. P. C. Calder, “Polyunsaturated fatty acids and inflammation,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 75, no. 3, pp. 197–202, 2006. View at Publisher · View at Google Scholar
  24. A. Madej, B. Okopien, J. Kowalski et al., “Effects of fenofibrate on plasma cytokine concentrations in patients with atherosclerosis and hyperlipoproteinemia IIb,” International Journal of Clinical Pharmacology and Therapeutics, vol. 36, no. 6, pp. 345–349, 1998. View at Google Scholar
  25. B. Staels, W. Koenig, A. Habib et al., “Activation of human aortic smooth-muscle cells is inhibited by PPARa but not by PPAR? activators,” Nature, vol. 393, no. 6687, pp. 790–793, 1998. View at Publisher · View at Google Scholar
  26. N. Marx, G. K. Sukhova, T. Collins, P. Libby, and J. Plutzky, “PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells,” Circulation, vol. 99, no. 24, pp. 3125–3131, 1999. View at Google Scholar
  27. M. Meissner, M. Stein, C. Urbich et al., “PPARa activators inhibit vascular endothelial growth factor receptor-2 expression by repressing Sp1-dependent DNA binding and transactivation,” Circulation Research, vol. 94, no. 3, pp. 324–332, 2004. View at Publisher · View at Google Scholar
  28. N. Marx, B. Kehrle, K. Kohlhammer et al., “PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis,” Circulation Research, vol. 90, no. 6, pp. 703–710, 2002. View at Publisher · View at Google Scholar
  29. P. Delerive, K. De Bosscher, S. Besnard et al., “Peroxisome proliferator-activated receptor a negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-?B and AP-1,” The Journal of Biological Chemistry, vol. 274, no. 45, pp. 32048–32054, 1999. View at Publisher · View at Google Scholar
  30. R. Grau, C. Punzón, M. Fresno, and M. A. Iñiguez, “Peroxisome-proliferator-activated receptor α agonists inhibit cyclo-oxygenase 2 and vascular endothelial growth factor transcriptional activation in human colorectal carcinoma cells via inhibition of activator protein-1,” Biochemical Journal, vol. 395, no. 1, pp. 81–88, 2006. View at Publisher · View at Google Scholar
  31. A. Mouthiers, A. Baillet, C. Deloménie, D. Porquet, and N. Mejdoubi-Charef, “Peroxime proliferator-activated receptor α physically interacts with CCAAT/enhancer binding protein (C/EBPβ) to inhibit C/EBPβ-responsive α1-acid glycoprotein gene expression,” Molecular Endocrinology, vol. 19, no. 5, pp. 1135–1146, 2005. View at Publisher · View at Google Scholar
  32. P. Gervois, N. Vu-Dac, R. Kleemann et al., “Negative regulation of human fibrinogen gene expression by peroxisome proliferator-activated receptor a agonists via inhibition of CCAAT box/enhancer-binding protein ß,” The Journal of Biological Chemistry, vol. 276, no. 36, pp. 33471–33477, 2001. View at Publisher · View at Google Scholar
  33. J. M. Shipley and D. J. Waxman, “Down-regulation of STAT5b transcriptional activity by ligand-activated peroxisome proliferator-activated receptor (PPAR) α and PPARγ,” Molecular Pharmacology, vol. 64, no. 2, pp. 355–364, 2003. View at Publisher · View at Google Scholar
  34. P. Delerive, F. Martin-Nizard, G. Chinetti et al., “Peroxisome proliferator-activated receptor activators inhibit thrombin- induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway,” Circulation Research, vol. 85, no. 5, pp. 394–402, 1999. View at Google Scholar
  35. P. Desreumaux, L. Dubuquoy, S. Nutten et al., “Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor ? (PPAR?) heterodimer: a basis for new therapeutic strategies,” Journal of Experimental Medicine, vol. 193, no. 7, pp. 827–838, 2001. View at Publisher · View at Google Scholar
  36. Y. Irukayama-Tomobe, T. Miyauchi, S. Sakai et al., “Endothelin-1-induced cardiac hyperthrophy is inhibited by activation of peroxisome proliferator-activated receptor-a partly via blockade of c-Jun NH2-terminal kinase pathway,” Circulation, vol. 109, no. 7, pp. 904–910, 2004. View at Publisher · View at Google Scholar
  37. J. M. Peters, C. Cheung, and F. J. Gonzalez, “Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand?” Journal of Molecular Medicine, vol. 83, no. 10, pp. 774–785, 2005. View at Publisher · View at Google Scholar
  38. J. K. Reddy, D. L. Azarnoff, and C. E. Hignite, “Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens,” Nature, vol. 283, no. 5745, pp. 397–398, 1980. View at Publisher · View at Google Scholar
  39. S. S. Lee, T. Pineau, J. Drago et al., “Targeted disruption of the a isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators,” Molecular and Cellular Biology, vol. 15, no. 6, pp. 3012–3022, 1995. View at Google Scholar
  40. M. H. Frick, O. Elo, K. Haapa et al., “Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease,” The New England Journal of Medicine, vol. 317, no. 20, pp. 1237–1245, 1987. View at Google Scholar
  41. P. Gariot, E. Barrat, L. Mejean, J. P. Pointel, P. Drouin, and G. Debry, “Fenofibrate and human liver. Lack of proliferation of peroxisomes,” Archives of Toxicology, vol. 53, no. 2, pp. 151–163, 1983. View at Google Scholar
  42. J. Ashby, A. Brady, C. R. Elcombe et al., “Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis,” Human and Experimental Toxicology, vol. 13, supplement 2, pp. S1–S117, 1994. View at Google Scholar
  43. S. Chevalier and R. A. Roberts, “Perturbation of rodent hepatocyte growth control by nongenotoxic hepatocarcinogens: mechanisms and lack of relevance for human health,” Oncology Reports, vol. 5, no. 6, pp. 1319–1327, 1998. View at Google Scholar
  44. F. J. Gonzalez and Y. M. Shah, “PPARα: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators,” Toxicology, vol. 246, no. 1, pp. 2–8, 2008. View at Publisher · View at Google Scholar
  45. J. W. Lawrence, Y. Li, S. Chen et al., “Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) a. PPARa fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expression,” The Journal of Biological Chemistry, vol. 276, no. 34, pp. 31521–31527, 2001. View at Publisher · View at Google Scholar
  46. C. N. A. Palmer, M.-H. Hsu, K. J. Griffin, J. L. Raucy, and E. F. Johnson, “Peroxisome proliferator activated receptor-α expression in human liver,” Molecular Pharmacology, vol. 53, no. 1, pp. 14–22, 1998. View at Google Scholar
  47. G. P. Collett, A. M. Betts, M. I. Johnson et al., “Peroxisome proliferator-activated receptor a is an androgen-responsive gene in human prostate and is highly expressed in prostatic adenocarcinoma,” Clinical Cancer Research, vol. 6, no. 8, pp. 3241–3248, 2000. View at Google Scholar
  48. K. M. Suchanek, F. J. May, J. A. Robinson et al., “Peroxisome proliferator-activated receptor a in the human breast cancer cell lines MCF-7 and MDA-MB-231,” Molecular Carcinogenesis, vol. 34, no. 4, pp. 165–171, 2002. View at Publisher · View at Google Scholar
  49. D. Panigrahy, A. Kaipainen, S. Huang et al., “PPARa agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 985–990, 2008. View at Publisher · View at Google Scholar
  50. L. Jackson, W. Wahli, L. Michalik et al., “Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer,” Gut, vol. 52, no. 9, pp. 1317–1322, 2003. View at Publisher · View at Google Scholar
  51. Y. Segawa, R. Yoshimura, T. Hase et al., “Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer,” The Prostate, vol. 51, no. 2, pp. 108–116, 2002. View at Publisher · View at Google Scholar
  52. T. Hase, R. Yoshimura, M. Mitsuhashi et al., “Expression of peroxisome proliferator-activated receptors in human testicular cancer and growth inhibition by its agonists,” Urology, vol. 60, no. 3, pp. 542–547, 2002. View at Publisher · View at Google Scholar
  53. R. Yoshimura, M. Matsuyama, Y. Segawa et al., “Expression of peroxisome proliferator-activated receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists,” International Journal of Cancer, vol. 104, no. 5, pp. 597–602, 2003. View at Publisher · View at Google Scholar
  54. K. Urbanska, P. Pannizzo, M. Grabacka et al., “Activation of PPARa inhibits IGF-I-mediated growth and survival responses in medulloblastoma cell lines,” International Journal of Cancer, vol. 123, no. 5, pp. 1015–1024, 2008. View at Publisher · View at Google Scholar
  55. G. Muzio, M. Maggiora, A. Trombetta et al., “Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells,” Toxicology, vol. 187, no. 2-3, pp. 149–159, 2003. View at Publisher · View at Google Scholar
  56. M. Grabacka, P. M. Plonka, K. Urbanska, and K. Reiss, “Peroxisome proliferator-activated receptor α activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt,” Clinical Cancer Research, vol. 12, no. 10, pp. 3028–3036, 2006. View at Publisher · View at Google Scholar
  57. S. A. Saidi, C. M. Holland, D. S. Charnock-Jones, and S. K. Smith, “In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer,” Molecular Cancer, vol. 5, article 13, pp. 1–14, 2006. View at Publisher · View at Google Scholar
  58. T. Shigeto, Y. Yokoyama, B. Xin, and H. Mizunuma, “Peroxisome proliferator-activated receptor α and γ ligands inhibit the growth of human ovarian cancer,” Oncology Reports, vol. 18, no. 4, pp. 833–840, 2007. View at Google Scholar
  59. Y. Yokoyama, B. Xin, T. Shigeto et al., “Clofibric acid, a peroxisome proliferator-activated receptor a ligand, inhibits growth of human ovarian cancer,” Molecular Cancer Therapeutics, vol. 6, no. 4, pp. 1379–1386, 2007. View at Publisher · View at Google Scholar
  60. T. Tanaka, H. Kohno, S. Yoshitani et al., “Ligands for peroxisome proliferator-activated receptors a and ? inhibit chemically induced colitis and formation of aberrant crypt foci in rats,” Cancer Research, vol. 61, no. 6, pp. 2424–2428, 2001. View at Google Scholar
  61. M. Maggiora, M. Bologna, M. P. Cerù et al., “An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines,” International Journal of Cancer, vol. 112, no. 6, pp. 909–919, 2004. View at Publisher · View at Google Scholar
  62. P. Thuillier, G. J. Anchiraico, K. P. Nickel et al., “Activators of peroxisome proliferator-activated receptor-a partially inhibit mouse skin tumor promotion,” Molecular Carcinogenesis, vol. 29, no. 3, pp. 134–142, 2000. View at Publisher · View at Google Scholar
  63. M. Grabacka, W. Placha, P. M. Plonka et al., “Inhibition of melanoma metastases by fenofibrate,” Archives of Dermatological Research, vol. 296, no. 2, pp. 54–58, 2004. View at Publisher · View at Google Scholar
  64. S. Goetze, F. Eilers, A. Bungenstock et al., “PPAR activators inhibit endothelial cell migration by targeting Akt,” Biochemical and Biophysical Research Communications, vol. 293, no. 5, pp. 1431–1437, 2002. View at Publisher · View at Google Scholar
  65. J. Varet, L. Vincent, P. Mirshahi et al., “Fenofibrate inhibits angiogenesis in vitro and in vivo,” Cellular and Molecular Life Sciences, vol. 60, no. 4, pp. 810–819, 2003. View at Publisher · View at Google Scholar
  66. A. Pozzi, M. R. Ibanez, A. E. Gatica et al., “Peroxisomal proliferator-activated receptor-a-dependent inhibition of endothelial cell proliferation and tumorigenesis,” The Journal of Biological Chemistry, vol. 282, no. 24, pp. 17685–17695, 2007. View at Publisher · View at Google Scholar
  67. A. Kaipainen, M. W. Kieran, S. Huang et al., “PPARa deficiency in inflammatory cells suppresses tumor growth,” PLoS ONE, vol. 2, no. 2, p. e260, 2007. View at Publisher · View at Google Scholar
  68. K. E. de Visser, A. Eichten, and L. M. Coussens, “Paradoxical roles of the immune system during cancer development,” Nature Reviews Cancer, vol. 6, no. 1, pp. 24–37, 2006. View at Publisher · View at Google Scholar
  69. R. J. Prestwich, F. Errington, P. Hatfield et al., “The immune system—is it relevant to cancer development, progression and treatment?” Clinical Oncology, vol. 20, no. 2, pp. 101–112, 2008. View at Publisher · View at Google Scholar
  70. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar
  71. A. Mantovani, P. Romero, A. K. Palucka, and F. M. Marincola, “Tumour immunity: effector response to tumour and role of the microenvironment,” The Lancet, vol. 371, no. 9614, pp. 771–783, 2008. View at Publisher · View at Google Scholar
  72. B. B. Aggarwal, S. Shishodia, S. K. Sandur, M. K. Pandey, and G. Sethi, “Inflammation and cancer: how hot is the link?” Biochemical Pharmacology, vol. 72, no. 11, pp. 1605–1621, 2006. View at Publisher · View at Google Scholar
  73. S. J. Shiff, P. Shivaprasad, and D. L. Santini, “Cyclooxygenase inhibitors: drugs for cancer prevention,” Current Opinion in Pharmacology, vol. 3, no. 4, pp. 352–361, 2003. View at Publisher · View at Google Scholar
  74. M. J. Thun, S. J. Henley, and C. Patrono, “Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues,” Journal of the National Cancer Institute, vol. 94, no. 4, pp. 252–266, 2002. View at Google Scholar
  75. Y. Q. Chen, I. J. Edwards, S. J. Kridel, T. Thornburg, and I. M. Berquin, “Dietary fat-gene interactions in cancer,” Cancer and Metastasis Reviews, vol. 26, no. 3-4, pp. 535–551, 2007. View at Publisher · View at Google Scholar
  76. E. Escrich, R. Moral, L. Grau, I. Costa, and M. Solanas, “Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer,” Molecular Nutrition and Food Research, vol. 51, no. 10, pp. 1279–1292, 2007. View at Publisher · View at Google Scholar
  77. I. Morita, “Distinct functions of COX-1 and COX-2,” Prostaglandins & Other Lipid Mediators, vol. 68-69, pp. 165–175, 2002. View at Publisher · View at Google Scholar
  78. W. L. Smith, D. L. DeWitt, and R. M. Garavito, “Cyclooxygenases: structural, cellular, and molecular biology,” Annual Review of Biochemistry, vol. 69, pp. 145–182, 2000. View at Publisher · View at Google Scholar
  79. T. Tanabe and N. Tohnai, “Cyclooxygenase isozymes and their gene structures and expression,” Prostaglandins & Other Lipid Mediators, vol. 68-69, pp. 95–114, 2002. View at Publisher · View at Google Scholar
  80. D. L. Simmons, R. M. Botting, and T. Hla, “Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition,” Pharmacological Reviews, vol. 56, no. 3, pp. 387–437, 2004. View at Publisher · View at Google Scholar
  81. G. Dannhardt and W. Kiefer, “Cyclooxygenase inhibitors—current status and future prospects,” European Journal of Medicinal Chemistry, vol. 36, no. 2, pp. 109–126, 2001. View at Publisher · View at Google Scholar
  82. L. J. Marnett, “Recent developments in cyclooxygenase inhibition,” Prostaglandins & Other Lipid Mediators, vol. 68-69, pp. 153–164, 2002. View at Publisher · View at Google Scholar
  83. K. Subbaramaiah and A. J. Dannenberg, “Cyclooxygenase 2: a molecular target for cancer prevention and treatment,” Trends in Pharmacological Sciences, vol. 24, no. 2, pp. 96–102, 2003. View at Publisher · View at Google Scholar
  84. C. E. Eberhart, R. J. Coffey, A. Radhika, F. M. Giardiello, S. Ferrenbach, and R. N. Dubois, “Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas,” Gastroenterology, vol. 107, no. 4, pp. 1183–1188, 1994. View at Google Scholar
  85. L. J. Marnett and R. N. DuBois, “COX-2: a target for colon cancer prevention,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 55–80, 2002. View at Publisher · View at Google Scholar
  86. G. Huls, J. J. Koornstra, and J. H. Kleibeuker, “Non-steroidal anti-inflammatory drugs and molecular carcinogenesis of colorectal carcinomas,” The Lancet, vol. 362, no. 9379, pp. 230–232, 2003. View at Publisher · View at Google Scholar
  87. R. A. Gupta and R. N. DuBois, “Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2,” Nature Reviews Cancer, vol. 1, no. 1, pp. 11–21, 2001. View at Google Scholar
  88. T. Kawamori, C. V. Rao, K. Seibert, and B. S. Reddy, “Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis,” Cancer Research, vol. 58, no. 3, pp. 409–412, 1998. View at Google Scholar
  89. S. Gately, “The contributions of cyclooxygenase-2 to tumor angiogenesis,” Cancer and Metastasis Reviews, vol. 19, no. 1-2, pp. 19–27, 2000. View at Publisher · View at Google Scholar
  90. M. A. Iñiguez, A. Rodríguez, O. V. Volpert, M. Fresno, and J. M. Redondo, “Cyclooxygenase-2: a therapeutic target in angiogenesis,” Trends in Molecular Medicine, vol. 9, no. 2, pp. 73–78, 2003. View at Publisher · View at Google Scholar
  91. I. Tegeder, J. Pfeilschifter, and G. Geisslinger, “Cyclooxygenase-independent actions of cyclooxygenase inhibitors,” The FASEB Journal, vol. 15, no. 12, pp. 2057–2072, 2001. View at Publisher · View at Google Scholar
  92. M. S. Jaradat, B. Wongsud, S. Phornchirasilp et al., “Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H2 synthases by ibuprofen, naproxen, and indomethacin,” Biochemical Pharmacology, vol. 62, no. 12, pp. 1587–1595, 2001. View at Publisher · View at Google Scholar
  93. J. M. Lehmann, J. M. Lenhard, B. B. Oliver, G. M. Ringold, and S. A. Kliewer, “Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs,” The Journal of Biological Chemistry, vol. 272, no. 6, pp. 3406–3410, 1997. View at Publisher · View at Google Scholar
  94. C. K. Combs, P. Bates, J. C. Karlo, and G. E. Landreth, “Regulation of β-amyloid stimulated proinflammatory responses by peroxisome proliferator-activated receptor α,” Neurochemistry International, vol. 39, no. 5-6, pp. 449–457, 2001. View at Publisher · View at Google Scholar
  95. J. Yu, E. Ip, A. Dela Peña et al., “COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator,” Hepatology, vol. 43, no. 4, pp. 826–836, 2006. View at Publisher · View at Google Scholar
  96. A. D. Blann, F. M. Belgore, J. Constans, C. Conri, and G. Y. H. Lip, “Plasma vascular endothelial growth factor and its receptor Flt-1 in patients with hyperlipidemia and atherosclerosis and the effects of fluvastatin or fenofibrate,” American Journal of Cardiology, vol. 87, no. 10, pp. 1160–1163, 2001. View at Publisher · View at Google Scholar
  97. D. Hanahan and J. Folkman, “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,” Cell, vol. 86, no. 3, pp. 353–364, 1996. View at Publisher · View at Google Scholar
  98. J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nature Medicine, vol. 1, no. 1, pp. 27–31, 1995. View at Google Scholar
  99. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000. View at Publisher · View at Google Scholar
  100. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nature Reviews Cancer, vol. 3, no. 6, pp. 401–410, 2003. View at Publisher · View at Google Scholar
  101. D. Liao and R. S. Johnson, “Hypoxia: a key regulator of angiogenesis in cancer,” Cancer and Metastasis Reviews, vol. 26, no. 2, pp. 281–290, 2007. View at Publisher · View at Google Scholar
  102. M. M. Hickey and M. C. Simon, “Regulation of angiogenesis by hypoxia and hypoxia-inducible factors,” Current Topics in Developmental Biology, vol. 76, pp. 217–257, 2006. View at Publisher · View at Google Scholar
  103. A. Weidemann and R. S. Johnson, “Biology of HIF-1α,” Cell Death and Differentiation, vol. 15, no. 4, pp. 621–627, 2008. View at Publisher · View at Google Scholar
  104. A. Kaidi, D. Qualtrough, A. C. Williams, and C. Paraskeva, “Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia,” Cancer Research, vol. 66, no. 13, pp. 6683–6691, 2006. View at Publisher · View at Google Scholar
  105. N. Simiantonaki, C. Jayasinghe, R. Michel-Schmidt, K. Peters, M. I. Hermanns, and C. J. Kirkpatrick, “Hypoxia-induced epithelial VEGF-C/VEGFR-3 upregulation in carcinoma cell lines,” International Journal of Oncology, vol. 32, no. 3, pp. 585–592, 2008. View at Google Scholar
  106. P. Pichiule, J. C. Chavez, and J. C. LaManna, “Hypoxic regulation of angiopoietin-2 expression in endothelial cells,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12171–12180, 2004. View at Publisher · View at Google Scholar
  107. E. B. Rankin and A. J. Giaccia, “The role of hypoxia-inducible factors in tumorigenesis,” Cell Death and Differentiation, vol. 15, no. 4, pp. 678–685, 2008. View at Publisher · View at Google Scholar
  108. N. Ferrara, “VEGF: an update on biological and therapeutic aspects,” Current Opinion in Biotechnology, vol. 11, no. 6, pp. 617–624, 2000. View at Publisher · View at Google Scholar
  109. M. J. Cross and L. Claesson-Welsh, “FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition,” Trends in Pharmacological Sciences, vol. 22, no. 4, pp. 201–207, 2001. View at Publisher · View at Google Scholar
  110. Q. T. Ho and C. J. Kuo, “Vascular endothelial growth factor: biology and therapeutic applications,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 7-8, pp. 1349–1357, 2007. View at Publisher · View at Google Scholar
  111. N. Ferrara, H.-P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar
  112. M. Shibuya and L. Claesson-Welsh, “Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis,” Experimental Cell Research, vol. 312, no. 5, pp. 549–560, 2006. View at Publisher · View at Google Scholar
  113. M. Shibuya, N. Ito, and L. Claesson-Welsh, “Structure and function of vascular endothelial growth factor receptor-1 and -2,” Current Topics in Microbiology and Immunology, vol. 237, pp. 59–83, 1999. View at Google Scholar
  114. A. W. Griffioen and G. Molema, “Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation,” Pharmacological Reviews, vol. 52, no. 2, pp. 237–268, 2000. View at Google Scholar
  115. T. Kasai, K. Miyauchi, T. Yokoyama, K. Aihara, and H. Daida, “Efficacy of peroxisome proliferative activated receptor (PPAR)-α ligands, fenofibrate, on intimal hyperplasia and constrictive remodeling after coronary angioplasty in porcine models,” Atherosclerosis, vol. 188, no. 2, pp. 274–280, 2006. View at Publisher · View at Google Scholar