Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008, Article ID 704165, 12 pages
http://dx.doi.org/10.1155/2008/704165
Review Article

PPAR 𝛾 and Apoptosis in Cancer

Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA

Received 19 February 2008; Revised 21 April 2008; Accepted 11 June 2008

Academic Editor: Dipak Panigrahy

Copyright © 2008 Heath A. Elrod and Shi-Yong Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Han and J. Roman, “Peroxisome proliferator-activated receptor γ: a novel target for cancer therapeutics?” Anti-Cancer Drugs, vol. 18, no. 3, pp. 237–244, 2007. View at Publisher · View at Google Scholar
  2. P. Sertznig, M. Seifert, W. Tilgen, and J. Reichrath, “Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer,” Journal of Cellular Physiology, vol. 212, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar
  3. M. Lehrke and M. A. Lazar, “The many faces of PPARγ,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at Publisher · View at Google Scholar
  4. C. N. A. Palmer, M.-H. Hsu, K. J. Griffin, and E. F. Johnson, “Novel sequence determinants in peroxisome proliferator signaling,” Journal of Biological Chemistry, vol. 270, no. 27, pp. 16114–16121, 1995. View at Publisher · View at Google Scholar
  5. S. Yu and J. K. Reddy, “Transcription coactivators for peroxisome proliferator-activated receptors,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 936–951, 2007. View at Publisher · View at Google Scholar
  6. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Publisher · View at Google Scholar
  7. S. A. Kliewer, J. M. Lenhard, T. M. Willson, I. Patel, D. C. Morris, and J. M. Lehmann, “A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation,” Cell, vol. 83, no. 5, pp. 813–819, 1995. View at Publisher · View at Google Scholar
  8. C. E. Clay, A. Monjazeb, J. Thorburn, F. H. Chilton, and K. P. High, “15-deoxy-Δ12,14-prostaglandin J2-induced apoptosis does not require PPARγ in breast cancer cells,” Journal of Lipid Research, vol. 43, no. 11, pp. 1818–1828, 2002. View at Publisher · View at Google Scholar
  9. K. Ohta, T. Endo, K. Haraguchi, J. M. Hershman, and T. Onaya, “Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 2170–2177, 2001. View at Publisher · View at Google Scholar
  10. M. L. Martelli, R. Iuliano, I. Le Pera et al., “Inhibitory effects of peroxisome proliferator-activated receptor ? on thyroid carcinoma cell growth,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 10, pp. 4728–4735, 2002. View at Publisher · View at Google Scholar
  11. Y. Kato, H. Ying, L. Zhao et al., “PPAR? insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-?B signaling pathway,” Oncogene, vol. 25, no. 19, pp. 2736–2747, 2006. View at Publisher · View at Google Scholar
  12. T. Shimada, K. Kojima, K. Yoshiura, H. Hiraishi, and A. Terano, “Characteristics of the peroxisome proliferator activated receptor γ (PPARγ) ligand induced apoptosis in colon cancer cells,” Gut, vol. 50, no. 5, pp. 658–664, 2002. View at Publisher · View at Google Scholar
  13. T. Satoh, M. Toyoda, H. Hoshino et al., “Activation of peroxisome proliferator-activated receptor-? stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells,” Oncogene, vol. 21, no. 14, pp. 2171–2180, 2002. View at Publisher · View at Google Scholar
  14. S. J. Baek, L. C. Wilson, L. C. Hsi, and T. E. Eling, “Troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, selectively induces the early growth response-1 gene independently of PPARγ: a novel mechanism for its anti-tumorigenic activity,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5845–5853, 2003. View at Publisher · View at Google Scholar
  15. S. J. Baek, J.-S. Kim, J. B. Nixon, R. P. DiAugustine, and T. E. Eling, “Expression of NAG-1, a transforming growth factor-β superfamily member, by troglitazone requires the early growth response gene EGR-1,” Journal of Biological Chemistry, vol. 279, no. 8, pp. 6883–6892, 2004. View at Publisher · View at Google Scholar
  16. M. Li, T. W. Lee, A. P. C. Yim, T. S. K. Mok, and G. G. Chen, “Apoptosis induced by troglitazone is both peroxisome proliterator-activated receptor-γ- and ERK-dependent in human non-small lung cancer cells,” Journal of Cellular Physiology, vol. 209, no. 2, pp. 428–438, 2006. View at Publisher · View at Google Scholar
  17. J. Pandhare, S. K. Cooper, and J. M. Phang, “Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor γ-dependent and -independent mechanisms,” Journal of Biological Chemistry, vol. 281, no. 4, pp. 2044–2052, 2006. View at Publisher · View at Google Scholar
  18. C.-W. Shiau, C.-C. Yang, S. K. Kulp et al., “Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPAR?,” Cancer Research, vol. 65, no. 4, pp. 1561–1569, 2005. View at Publisher · View at Google Scholar
  19. N. G. Nikitakis, H. Siavash, C. Hebert, M. A. Reynolds, A. W. Hamburger, and J. J. Sauk, “15-PGJ2, but not thiazolidinediones, inhibits cell growth, induces apoptosis, and causes downregulation of Stat3 in human oral SCCa cells,” British Journal of Cancer, vol. 87, no. 12, pp. 1396–1403, 2002. View at Publisher · View at Google Scholar
  20. C. L. Chaffer, D. M. Thomas, E. W. Thompson, and E. D. Williams, “PPARγ-independent induction of growth arrest and apoptosis in prostate and bladder carcinoma,” BMC Cancer, vol. 6, article 53, pp. 1–13, 2006. View at Publisher · View at Google Scholar
  21. R. Piva, P. Gianferretti, A. Ciucci, R. Taulli, G. Belardo, and M. G. Santoro, “15-deoxy-Δ12,14-prostaglandin J2 induces apoptosis in human malignant B cells: an effect associated with inhibition of NF-κB activity and down-regulation of antiapoptotic proteins,” Blood, vol. 105, no. 4, pp. 1750–1758, 2005. View at Publisher · View at Google Scholar
  22. D. Bonofiglio, S. Aquila, S. Catalano et al., “Peroxisome proliferator-activated receptor-? activates p53 gene promoter binding to the nuclear factor-?B sequence in human MCF7 breast cancer cells,” Molecular Endocrinology, vol. 20, no. 12, pp. 3083–3092, 2006. View at Publisher · View at Google Scholar
  23. H. Steller, “Mechanisms and genes of cellular suicide,” Science, vol. 267, no. 5203, pp. 1445–1449, 1995. View at Publisher · View at Google Scholar
  24. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar
  25. K.-M. Debatin and P. H. Krammer, “Death receptors in chemotherapy and cancer,” Oncogene, vol. 23, no. 16, pp. 2950–2966, 2004. View at Publisher · View at Google Scholar
  26. E. H. Shroff, C. Snyder, and N. S. Chandel, “Role of Bcl-2 family members in anoxia induced cell death,” Cell Cycle, vol. 6, no. 7, pp. 807–809, 2007. View at Google Scholar
  27. A. Ashkenazi and V. M. Dixit, “Death receptors: signaling and modulation,” Science, vol. 281, no. 5381, pp. 1305–1308, 1998. View at Publisher · View at Google Scholar
  28. H. A. Elrod and S.-Y. Sun, “Modulation of death receptors by cancer therapeutic agents,” Cancer Biology and Therapy, vol. 7, no. 2, pp. 163–173, 2007. View at Google Scholar
  29. Y.-F. Guan, Y.-H. Zhang, R. M. Breyer, L. Davis, and M. D. Breyer, “Expression of peroxisome proliferator-activated receptor γ (PPARγ) in human transitional bladder cancer and its role in inducing cell death,” Neoplasia, vol. 1, no. 4, pp. 330–339, 1999. View at Publisher · View at Google Scholar
  30. J. Padilla, K. Kaur, H. J. Cao, T. J. Smith, and R. P. Phipps, “Peroxisome proliferator activator receptor-γ agonists and 15-deoxy-Δ12,14-PGJ2 induce apoptosis in normal and malignant B-lineage cells,” Journal of Immunology, vol. 165, no. 12, pp. 6941–6948, 2000. View at Google Scholar
  31. H. Sato, S. Ishihara, K. Kawashima et al., “Expression of peroxisome proliferator-activated receptor (PPAR)? in gastric cancer and inhibitory effects of PPAR? agonists,” British Journal of Cancer, vol. 83, no. 10, pp. 1394–1400, 2000. View at Publisher · View at Google Scholar
  32. T. Takashima, Y. Fujiwara, K. Higuchi et al., “PPAR-gamma ligands inhibit growth of human esophageal adenocarcinoma cells through induction of apoptosis, cell cycle arrest and reduction of ornithine decarboxylase activity,” International Journal of Oncology, vol. 19, no. 3, pp. 465–471, 2001. View at Google Scholar
  33. W.-L. Yang and H. Frucht, “Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells,” Carcinogenesis, vol. 22, no. 9, pp. 1379–1383, 2001. View at Publisher · View at Google Scholar
  34. W. Zou, X. Liu, P. Yue, F. R. Khuri, and S.-Y. Sun, “PPARγ ligands enhance TRAIL-induced apoptosis through DR5 upregulation and c-FLIP downregulation in human lung cancer cells,” Cancer Biology and Therapy, vol. 6, no. 1, pp. 99–106, 2007. View at Google Scholar
  35. Y. Tsubouchi, H. Sano, Y. Kawahito et al., “Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-? agonists through induction of apoptosis,” Biochemical and Biophysical Research Communications, vol. 270, no. 2, pp. 400–405, 2000. View at Publisher · View at Google Scholar
  36. G. Eibl, M. N. Wente, H. A. Reber, and O. J. Hines, “Peroxisome proliferator-activated receptor γ induces pancreatic cancer cell apoptosis,” Biochemical and Biophysical Research Communications, vol. 287, no. 2, pp. 522–529, 2001. View at Publisher · View at Google Scholar
  37. M. Date, K. Fukuchi, S. Morita, H. Takahashi, and K. Ohura, “15-deoxy-Δ12,14-prostaglandin J2, a ligand for peroxisome proliferators-activated receptor-γ, induces apoptosis in human hepatoma cells,” Liver International, vol. 23, no. 6, pp. 460–466, 2003. View at Publisher · View at Google Scholar
  38. J. Eucker, K. Bängeroth, I. Zavrski et al., “Ligands of peroxisome proliferator-activated receptor ? induce apoptosis in multiple myeloma,” Anti-Cancer Drugs, vol. 15, no. 10, pp. 955–960, 2004. View at Publisher · View at Google Scholar
  39. N. Strakova, J. Ehrmann, J. Bartos, J. Malikova, J. Dolezel, and Z. Kolar, “Peroxisome proliferator-activated receptors (PPAR) agonists affect cell viability, apoptosis and expression of cell cycle related proteins in cell lines of glial brain tumors,” Neoplasma, vol. 52, no. 2, pp. 126–136, 2005. View at Google Scholar
  40. S. Oyadomari and M. Mori, “Roles of CHOP/GADD153 in endoplasmic reticulum stress,” Cell Death and Differentiation, vol. 11, no. 4, pp. 381–389, 2004. View at Publisher · View at Google Scholar
  41. K. Yamaguchi, S.-H. Lee, T. E. Eling, and S. J. Baek, “A novel peroxisome proliferator-activated receptor γ ligand, MCC-555, induces apoptosis via posttranscriptional regulation of NAG-1 in colorectal cancer cells,” Molecular Cancer Therapeutics, vol. 5, no. 5, pp. 1352–1361, 2006. View at Publisher · View at Google Scholar
  42. J.-R. Weng, C.-Y. Chen, J. J. Pinzone, M. D. Ringel, and C.-S. Chen, “Beyond peroxisome proliferator-activated receptor γ signaling: the multi-facets of the antitumor effect of thiazolidinediones,” Endocrine-Related Cancer, vol. 13, no. 2, pp. 401–413, 2006. View at Publisher · View at Google Scholar
  43. J.-L. Diaz, T. Oltersdorf, W. Horne et al., “A common binding site mediates heterodimerization and homodimerization of Bcl-2 family members,” Journal of Biological Chemistry, vol. 272, no. 17, pp. 11350–11355, 1997. View at Publisher · View at Google Scholar
  44. N. M. Finnegan, J. F. Curtin, G. Prevost, B. Morgan, and T. G. Cotter, “Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions,” British Journal of Cancer, vol. 85, no. 1, pp. 115–121, 2001. View at Publisher · View at Google Scholar
  45. R. Göke, A. Göke, B. Göke, W. S. El-Deiry, and Y. Chen, “Pioglitazone inhibits growth of carcinoid cells and promotes TRAIL-induced apoptosis by induction of p21waf1/cip1,” Digestion, vol. 64, no. 2, pp. 75–80, 2001. View at Publisher · View at Google Scholar
  46. R. Göke, A. Göke, B. Göke, and Y. Chen, “Regulation of TRAIL-induced apoptosis by transcription factors,” Cellular Immunology, vol. 201, no. 2, pp. 77–82, 2000. View at Publisher · View at Google Scholar
  47. S. Nakata, T. Yoshida, T. Shiraishi et al., “15-deoxy-?12,14-prostaglandin J2 induces death receptor 5 expression through mRNA stabilization independently of PPAR? and potentiates TRAIL-induced apoptosis,” Molecular Cancer Therapeutics, vol. 5, no. 7, pp. 1827–1835, 2006. View at Publisher · View at Google Scholar
  48. M. Lu, T. Kwan, C. Yu et al., “Peroxisome proliferator-activated receptor ? agonists promote TRAIL-induced apoptosis by reducing survivin levels via cyclin D3 repression and cell cycle arrest,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 6742–6751, 2005. View at Publisher · View at Google Scholar
  49. Y. H. Kim, E. M. Jung, T.-J. Lee et al., “Rosiglitazone promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP,” Free Radical Biology and Medicine, vol. 44, no. 6, pp. 1055–1068, 2008. View at Publisher · View at Google Scholar
  50. Y. Kim, N. Suh, M. Sporn, and J. C. Reed, “An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22320–22329, 2002. View at Publisher · View at Google Scholar
  51. K. Schultze, B. Böck, A. Eckert et al., “Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and Survivin,” Apoptosis, vol. 11, no. 9, pp. 1503–1512, 2006. View at Publisher · View at Google Scholar
  52. K. Schultze, B. Böck, A. Eckert et al., “Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and Survivin,” Apoptosis, vol. 11, no. 9, pp. 1503–1512, 2006. View at Publisher · View at Google Scholar
  53. Y. Akasaki, G. Liu, H. H. Matundan et al., “A peroxisome proliferator-activated receptor-? agonist, troglitazone, facilitates caspase-8 and -9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells,” Journal of Biological Chemistry, vol. 281, no. 10, pp. 6165–6174, 2006. View at Publisher · View at Google Scholar
  54. I. Avis, A. Martínez, J. Tauler et al., “Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition,” Cancer Research, vol. 65, no. 10, pp. 4181–4190, 2005. View at Publisher · View at Google Scholar
  55. M. Konopleva, E. Elstner, T. J. McQueen et al., “Peroxisome proliferator-activated receptor ? and retinoid X receptor ligands are potent inducers of differentiation and apoptosis in leukemias,” Molecular Cancer Therapeutics, vol. 3, no. 10, pp. 1249–1262, 2004. View at Google Scholar
  56. G. D. Girnun, E. Naseri, S. B. Vafai et al., “Synergy between PPAR? ligands and platinum-based drugs in cancer,” Cancer Cell, vol. 11, no. 5, pp. 395–406, 2007. View at Publisher · View at Google Scholar
  57. H. Liu, C. Zang, M. H. Fenner et al., “Growth inhibition and apoptosis in human Philadelphia chromosome-positive lymphoblastic leukemia cell lines by treatment with the dual PPARa/? ligand TZD18,” Blood, vol. 107, no. 9, pp. 3683–3692, 2006. View at Publisher · View at Google Scholar
  58. C. Zang, H. Liu, M. Waechter et al., “Dual PPARa/? ligand TZD18 either alone or in combination with imatinib inhibits proliferation and induces apoptosis of human CML cell lines,” Cell Cycle, vol. 5, no. 19, pp. 2237–2243, 2006. View at Google Scholar
  59. J. A. Copland, L. A. Marlow, S. Kurakata et al., “Novel high-affinity PPAR? agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1,” Oncogene, vol. 25, no. 16, pp. 2304–2317, 2006. View at Publisher · View at Google Scholar
  60. S. V. Fulzele, A. Chatterjee, M. S. Shaik, T. Jackson, N. Ichite, and M. Singh, “15-deoxy-Δ12,14-prostaglandin J2 enhances docetaxel anti-tumor activity against A549 and H460 non-small-cell lung cancer cell lines and xenograft tumors,” Anti-Cancer Drugs, vol. 18, no. 1, pp. 65–78, 2007. View at Publisher · View at Google Scholar
  61. Y. W. Chung, D. S. Han, E. K. Kang et al., “Effects of peroxisome proliferator-activated receptor-gamma agonist on Fas-mediated apoptosis in HT-29 cells,” The Korean Journal of Gastroenterology, vol. 42, no. 1, pp. 35–41, 2003. View at Google Scholar
  62. M. Mody, N. Dharker, M. Bloomston et al., “Rosiglitazone sensitizes MDA-MB-231 breast cancer cells to anti-tumour effects of tumour necrosis factor-a, CH11 and CYC202,” Endocrine-Related Cancer, vol. 14, no. 2, pp. 305–315, 2007. View at Publisher · View at Google Scholar
  63. D.-H. Nam, S. Ramachandran, D.-K. Song et al., “Growth inhibition and apoptosis induced in human leiomyoma cells by treatment with the PPAR gamma ligand ciglitizone,” Molecular Human Reproduction, vol. 13, no. 11, pp. 829–836, 2007. View at Publisher · View at Google Scholar
  64. I. Avis, S. H. Hong, A. Martinez et al., “Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions,” The FASEB Journal, vol. 15, no. 11, pp. 2007–2009, 2001. View at Google Scholar
  65. D. L. Crowe and R. A. Chandraratna, “A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands,” Breast Cancer Research, vol. 6, no. 5, pp. R546–R555, 2004. View at Publisher · View at Google Scholar
  66. T. J. Giordano, A. Y. M. Au, R. Kuick et al., “Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation,” Clinical Cancer Research, vol. 12, no. 7, pp. 1983–1993, 2006. View at Publisher · View at Google Scholar
  67. J. D. Burton, M. E. Castillo, D. M. Goldenberg, and R. D. Blumenthal, “Peroxisome proliferator-activated receptor-γ antagonists exhibit potent antiproliferative effects versus many hematopoietic and epithelial cancer cell lines,” Anti-Cancer Drugs, vol. 18, no. 5, pp. 525–534, 2007. View at Publisher · View at Google Scholar
  68. J. M. Seargent, E. A. Yates, and J. H. Gill, “GW9662, a potent antagonist of PPARγ, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARγ agonist rosiglitazone, independently of PPARγ activation,” British Journal of Pharmacology, vol. 143, no. 8, pp. 933–937, 2004. View at Publisher · View at Google Scholar
  69. T. Masuda, K. Wada, A. Nakajima et al., “Critical role of peroxisome proliferator-activated receptor ? on anoikis and invasion of squamous cell carcinoma,” Clinical Cancer Research, vol. 11, no. 11, pp. 4012–4021, 2005. View at Publisher · View at Google Scholar
  70. K. L. Schaefer, H. Takahashi, V. M. Morales et al., “PPAR? inhibitors reduce tubulin protein levels by a PPAR?, PPARd and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells,” International Journal of Cancer, vol. 120, no. 3, pp. 702–713, 2007. View at Publisher · View at Google Scholar
  71. A.-M. Lefebvre, I. Chen, P. Desreumaux et al., “Activation of the peroxisome proliferator-activated receptor ? promotes the development of colon tumors in C57BL/6J-APCMin/+ mice,” Nature Medicine, vol. 4, no. 9, pp. 1053–1057, 1998. View at Publisher · View at Google Scholar
  72. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPAR? enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar
  73. N. G. Nikitakis, C. Hebert, M. A. Lopes, M. A. Reynolds, and J. J. Sauk, “PPARγ-mediated antineoplastic effect of NSAID sulindac on human oral squamous carcinoma cells,” International Journal of Cancer, vol. 98, no. 6, pp. 817–823, 2002. View at Publisher · View at Google Scholar
  74. Y. Cui, Z. Lu, L. Bai, Z. Shi, W.-E. Zhao, and B. Zhao, “β-carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor γ expression and reactive oxygen species production in MCF-7 cancer cells,” European Journal of Cancer, vol. 43, no. 17, pp. 2590–2601, 2007. View at Publisher · View at Google Scholar
  75. S. Ulrich, A. Wächtershäuser, S. Loitsch, A. von Knethen, B. Brüne, and J. Stein, “Activation of PPARγ is not involved in butyrate-induced epithelial cell differentiation,” Experimental Cell Research, vol. 310, no. 1, pp. 196–204, 2005. View at Publisher · View at Google Scholar
  76. M. Schwab, V. Reynders, S. Ulrich, N. Zahn, J. Stein, and O. Schröder, “PPARγ is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2,” Apoptosis, vol. 11, no. 10, pp. 1801–1811, 2006. View at Publisher · View at Google Scholar
  77. C.-S. Kim, W.-H. Park, J.-Y. Park et al., “Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor ? in HT-29 human colon cancer cells,” Journal of Medicinal Food, vol. 7, no. 3, pp. 267–273, 2004. View at Publisher · View at Google Scholar
  78. B. Hinz, R. Ramer, K. Eichele, U. Weinzierl, and K. Brune, “Up-regulation of cyclooxygenase-2 expression is involved in R(+)-methanandamide-induced apoptotic death of human neuroglioma cells,” Molecular Pharmacology, vol. 66, no. 6, pp. 1643–1651, 2004. View at Publisher · View at Google Scholar
  79. H.-K. Na, H. Inoue, and Y.-J. Surh, “ET-18-O-CH3 -induced apoptosis is causally linked to COX-2 upregulation in H-ras transformed human breast epithelial cells,” FEBS Letters, vol. 579, no. 27, pp. 6279–6287, 2005. View at Publisher · View at Google Scholar
  80. K. Eichele, R. Ramer, and B. Hinz, “Decisive role of cyclooxygenase-2 and lipocalin-type prostaglandin D synthase in chemotherapeutics-induced apoptosis of human cervical carcinoma cells,” Oncogene, vol. 27, no. 21, pp. 3032–3044, 2008. View at Publisher · View at Google Scholar
  81. Y. L. Pon and A. S. T. Wong, “Gonadotropin-induced apoptosis in human ovarian surface epithelial cells is associated with cyclooxygenase-2 up-regulation via the β-catenin/T-cell factor signaling pathway,” Molecular Endocrinology, vol. 20, no. 12, pp. 3336–3350, 2006. View at Publisher · View at Google Scholar
  82. H. Hasegawa, Y. Yamada, K. Komiyama et al., “A novel natural compound, a cycloanthranilylproline derivative (Fuligocandin B), sensitizes leukemia cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through 15-deoxy-?12,14 prostaglandin J2 production,” Blood, vol. 110, no. 5, pp. 1664–1674, 2007. View at Publisher · View at Google Scholar