Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008 (2008), Article ID 732303, 7 pages
http://dx.doi.org/10.1155/2008/732303
Review Article

The Role of Peroxisome Proliferator-Activated Receptors in the Development and Physiology of Gametes and Preimplantation Embryos

Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA

Received 22 August 2007; Accepted 4 December 2007

Academic Editor: Pascal Froment

Copyright © 2008 Jaou-Chen Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar
  2. C. M. Komar, “Peroxisome proliferator-activated receptors (PPARs) and ovarian function—implications for regulating steroidogenesis, differentiation, and tissue remodeling,” Reprod Biol Endocrinol, vol. 3, p. 41, 2005. View at Publisher · View at Google Scholar
  3. D. J. Mangelsdorf, C. Thummel, M. Beato et al., “The nuclear receptor superfamily: the second decade,” Cell, vol. 83, no. 6, pp. 835–839, 1995. View at Publisher · View at Google Scholar
  4. F. A. Mic, A. Molotkov, D. M. Benbrook, and G. Duester, “Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7135–7140, 2003. View at Publisher · View at Google Scholar
  5. G. Wolf, “Is 9-cis-retinoic acid the endogenous ligand for the retinoic acid-X receptor?” Nutrition Reviews, vol. 64, no. 12, pp. 532–538, 2006. View at Publisher · View at Google Scholar
  6. B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999. View at Publisher · View at Google Scholar
  7. Y. Shi, M. Hon, and R. M. Evans, “The peroxisome proliferator-activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 5, pp. 2613–2618, 2002. View at Publisher · View at Google Scholar
  8. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar
  9. N. Di-Poi, N. S. Tan, L. Michalik, W. Wahli, and B. Desvergne, “Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway,” Molecular Cell, vol. 10, no. 4, pp. 721–733, 2002. View at Publisher · View at Google Scholar
  10. L. Julan, H. Guan, J. P. van Beek, and K. Yang, “Peroxisome proliferator-activated receptor δ suppresses 11β-hydroxysteroid dehydrogenase type 2 gene expression in human placental trophoblast cells,” Endocrinology, vol. 146, no. 3, pp. 1482–1490, 2005. View at Publisher · View at Google Scholar
  11. J.-Y. Liou, S. Lee, D. Ghelani, N. Matijevic-Aleksic, and K. K. Wu, “Protection of endothelial survival by peroxisome proliferator-activated receptor-δ mediated 14-3-3 upregulation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 7, pp. 1481–1487, 2006. View at Publisher · View at Google Scholar
  12. H. Lim, R. A. Gupta, W. G. Ma et al., “Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARd,” Genes & development, vol. 13, no. 12, pp. 1561–1574, 1999. View at Google Scholar
  13. R. A. Gupta, D. Wang, S. Katkuri, H. Wang, S. K. Dey, and R. N. DuBois, “Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth,” Nature Medicine, vol. 10, pp. 245–247, 2004. View at Publisher · View at Google Scholar
  14. R. A. Gupta, J. Tan, W. F. Krause et al., “Prostacyclin-mediated activation of peroxisome proliferator-activated receptor d in colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13275–13280, 2000. View at Publisher · View at Google Scholar
  15. N. Di-Poi, L. Michalik, N. S. Tan, B. Desvergne, and W. Wahli, “The anti-apoptotic role of PPARβ contributes to efficient skin wound healing,” Journal of Steroid Biochemistry and Molecular Biology, vol. 85, no. 2–5, pp. 257–265, 2003. View at Publisher · View at Google Scholar
  16. N. Di-Poi, C. Y. Ng, N. S. Tan et al., “Epithelium-mesenchyme interactions control the activity of peroxisome proliferator-activated receptor ß/d during hair follicle development,” Molecular and Cellular Biology, vol. 25, no. 5, pp. 1696–1712, 2005. View at Publisher · View at Google Scholar
  17. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar
  18. T. T. Schug, D. C. Berry, N. S. Shaw, S. N. Travis, and N. Noy, “Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors,” Cell, vol. 129, no. 4, pp. 723–733, 2007. View at Publisher · View at Google Scholar
  19. K. Hardy and S. Spanos, “Growth factor expression and function in the human and mouse preimplantation embryo,” Journal of Endocrinology, vol. 172, no. 2, pp. 221–236, 2002. View at Publisher · View at Google Scholar
  20. J.-C. Huang, F. Arbab, K. J. Tumbusch, J. S. Goldsby, N. Matijevic-Aleksic, and K. K. Wu, “Human Fallopian tubes express prostacyclin (PGI) synthase and cyclooxygenases and synthesize abundant PGI,” Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 9, pp. 4361–4368, 2002. View at Publisher · View at Google Scholar
  21. J.-C. Huang, J. S. Goldsby, F. Arbab, Z. Melhem, N. Aleksic, and K. K. Wu, “Oviduct prostacyclin functions as a paracrine factor to augment the development of embryos,” Human Reproduction, vol. 19, no. 12, pp. 2907–2912, 2004. View at Publisher · View at Google Scholar
  22. J.-C. Huang, W. S. Wun, J. S. Goldsby, I. C. Wun, D. Noorhasan, and K. K. Wu, “Stimulation of embryo hatching and implantation by prostacyclin and peroxisome proliferator-activated receptor δ activation: implication in IVF,” Human Reproduction, vol. 22, no. 3, pp. 807–814, 2007. View at Publisher · View at Google Scholar
  23. H. Wang, Y. Wen, S. Mooney, B. Behr, and M. L. Polan, “Phospholipase A2 and cyclooxygenase gene expression in human preimplantation embryos,” Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 6, pp. 2629–2634, 2002. View at Publisher · View at Google Scholar
  24. J.-C. Huang, W.-S. A. Wun, J. S. Goldsby, N. Matijevic-Aleksic, and K. K. Wu, “Cyclooxygenase-2-derived endogenous prostacyclin enhances mouse embryo hatching,” Human Reproduction, vol. 19, no. 12, pp. 2900–2906, 2004. View at Publisher · View at Google Scholar
  25. P. L. Pakrasi and A. K. Jain, “Evaluation of cyclooxygenase 2 derived endogenous prostacyclin in mouse preimplantation embryo development in vitro,” Life Sciences, vol. 80, no. 16, pp. 1503–1507, 2007. View at Publisher · View at Google Scholar
  26. W. Krezel, V. Dupe, M Mark, A. Dierich, P. Kastner, and P. Chambon, “RXR gamma null mice are apparently normal and compound RXR alpha +/-/RXR beta -/-/RXR gamma -/- mutant mice are viable,” Proceedings of the National Academy of Sciences of the United states of America, vol. 93, no. 17, pp. 9010–9014, 1996. View at Publisher · View at Google Scholar
  27. P. Kastner, J. M. Grondona, M. Mark et al., “Genetic analysis of RXRa developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis,” Cell, vol. 78, no. 6, pp. 987–1003, 1994. View at Publisher · View at Google Scholar
  28. P. Kastner, M. Mark, M. Leid et al., “Abnormal spermatogenesis in RXR ß mutant mice,” Genes & development, vol. 10, pp. 80–92, 1996. View at Publisher · View at Google Scholar
  29. M. Mohan, N. R. Thirumalapura, and J. Malayer, “Bovine cumulus-granulosa cells contain biologically active retinoid receptors that can respond to retinoic acid,” Reproductive Biology and Endocrinology, vol. 1, p. 104, 2003. View at Publisher · View at Google Scholar
  30. M. Mohan, J. R. Malayer, R. D. Geisert, and G. L. Morgan, “Expression patterns of retinoid X receptors, retinaldehyde dehydrogenase, and peroxisome proliferator activated receptor γ in bovine preattachment embryos,” Biology of Reproduction, vol. 66, no. 3, pp. 692–700, 2002. View at Publisher · View at Google Scholar
  31. S. Minucci, J. Wong, J. C. G. Blanco, Y.-B. Shi, A. P. Wolffe, and K. Ozato, “Retinoid receptor-induced alteration of the chromatin assembled on a ligand-responsive promoter in Xenopus oocytes,” Molecular Endocrinology, vol. 12, no. 3, pp. 315–324, 1998. View at Publisher · View at Google Scholar
  32. N. Vernet, C. Dennefeld, C. Rochette-Egly et al., “Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis,” Endocrinology, vol. 147, no. 1, pp. 96–110, 2006. View at Publisher · View at Google Scholar
  33. T. Lufkin, D. Lohnes, M. Mark et al., “High postnatal lethality and testis degeneration in retinoic acid receptor a mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, pp. 7225–7229, 1993. View at Publisher · View at Google Scholar
  34. N. Vernet, C. Dennefeld, F. Guillou, P. Chambon, N. B. Ghyselinck, and M. Mark, “Prepubertal testis development relies on retinoic acid but not rexinoid receptors in Sertoli cells,” EMBO Journal, vol. 25, no. 24, pp. 5816–5825, 2006. View at Publisher · View at Google Scholar
  35. S. Aquila, D. Bonofiglio, M. Gentile et al., “Peroxisome proliferator-activated receptor (PPAR)? is expressed by human spermatozoa: its potential role on the sperm physiology,” Journal of Cellular Physiology, vol. 209, no. 3, pp. 977–986, 2006. View at Publisher · View at Google Scholar
  36. A. Tallafuss, L. A. Hale, Y.-L. Yan, L. Dudley, J. S. Eisen, and J. H. Postlethwait, “Characterization of retinoid-X receptor genes rxra, rxrba, rxrbb and rxrg during zebrafish development,” Gene Expression Patterns, vol. 6, no. 5, pp. 556–565, 2006. View at Publisher · View at Google Scholar
  37. S. Mamo, S. Ponsuksili, K. Wimmers, M. Gilles, and K. Schellander, “Expression of retinoid X receptor transcripts and their significance for developmental competence in in vitro-produced pre-implantation-stage bovine embryos,” Reproduction in Domestic Animals, vol. 40, no. 2, pp. 177–183, 2005. View at Publisher · View at Google Scholar
  38. O. Braissant, F. Foufelle, C. Scotto, M. Dauca, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, pp. 354–366, 1996. View at Publisher · View at Google Scholar
  39. A. Elbrecht, Y. Chen, C. A. Cullinan et al., “Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors ?1 and ?2,” Biochemical and Biophysical Research Communications, vol. 224, no. 2, pp. 431–437, 1996. View at Publisher · View at Google Scholar
  40. N. Bhattacharya, J. M. Dufour, M. N. Vo, J. Okita, R. Okita, and K. H. Kim, “Differential effects of phthalates on the testis and the liver,” Biology of Reproduction, vol. 72, pp. 745–754, 2005. View at Publisher · View at Google Scholar
  41. H. Higashiyama, A. N. Billin, Y. Okamoto, M. Kinoshita, and S. Asano, “Expression profiling of peroxisome proliferator-activated receptor-δ (PPAR-δ) in mouse tissues using tissue microarray,” Histochemistry and Cell Biology, vol. 127, no. 5, pp. 485–494, 2007. View at Publisher · View at Google Scholar
  42. K. Han, H. Song, I. Moon et al., “Utilization of DR1 as true RARE in regulating the Ssm, a novel retinoic acid-target gene in the mouse testis,” Journal of Endocrinology , vol. 192, pp. 539–551, 2007. View at Publisher · View at Google Scholar
  43. A. Ibabe, M. Grabenbauer, E. Baumgart, H. D. Fahimi, and M. P. Cajaraville, “Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio),” Histochemistry and Cell Biology, vol. 118, no. 3, pp. 231–239, 2002. View at Publisher · View at Google Scholar
  44. J. Y. Ryu, B. M. Lee, S. Kacew, and H. S. Kim, “Identification of differentially expressed genes in the testis of Sprague-Dawley rats treated with di(n-butyl) phthalate,” Toxicology, vol. 234, no. 1-2, pp. 103–112, 2007. View at Publisher · View at Google Scholar
  45. P. Froment, S. Fabre, J. Dupont et al., “Expression and functional role of peroxisome proliferator-activated receptor-? in ovarian folliculogenesis in the sheep,” Biology of Reproduction, vol. 69, pp. 1665–1674, 2003. View at Publisher · View at Google Scholar
  46. C. Dreyer and H. Ellinger-Ziegelbauer, “Retinoic acid receptors and nuclear orphan receptors in the development of Xenopus laevis,” International Journal of Developmental Biology, vol. 40, no. 1, pp. 255–262, 1996. View at Google Scholar
  47. J. R. Wood, D. A. Dumesic, D. H. Abbott, and J. F. Strauss III, “Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis,” Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 2, pp. 705–713, 2007. View at Publisher · View at Google Scholar
  48. Y. Cui, K. Miyoshi, E. Claudio et al., “Loss of the peroxisome proliferation-activated receptor ? (PPAR?) does not affect mammary development and propensity for tumor formation but leads to reduced fertility,” Journal of Biological Chemistry, vol. 277, no. 20, pp. 17830–17835, 2002. View at Publisher · View at Google Scholar
  49. Y. Barak, D. Liao, W. He et al., “Effects of peroxisome proliferator-activated receptor d on placentation, adiposity, and colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 303–308, 2002. View at Publisher · View at Google Scholar
  50. J.-C. Huang, W.-S. A. Wun, J. S. Goldsby, I. C. Wun, S. M. Falconi, and K. K. Wu, “Prostacyclin enhances embryo hatching but not sperm motility,” Human Reproduction, vol. 18, no. 12, pp. 2582–2589, 2003. View at Publisher · View at Google Scholar
  51. C.-H. Liu, M.-S. Lee, C.-H. Hsieh, C.-C. Huang, H.-M. Tsao, and Y.-S. Hsieh, “Prostacyclin enhances mouse embryo development and hatching but not increased embryonic cell number and volume,” Fertility and Sterility, vol. 86, no. 4, pp. 1047–1052, 2006. View at Publisher · View at Google Scholar
  52. J.-C. Huang, J. S. Goldsby, and W.-S.A. Wun, “Prostacyclin enhances the implantation and live birth potentials of mouse embryos,” Human Reproduction, vol. 19, no. 8, pp. 1856–1860, 2004. View at Publisher · View at Google Scholar
  53. E. A. Lock, A. M. Mitchell, and C. R. Elcombe, “Biochemical mechanisms of induction of hepatic peroxisome proliferation,” Annual Review of Pharmacology and Toxicology, vol. 29, pp. 145–163, 1989. View at Publisher · View at Google Scholar
  54. R. H. McKee, J. H. Butala, R. M. David, and G. Gans, “NTP center for the evaluation of risks to human reproduction reports on phthalates: addressing the data gaps,” Reproductive Toxicology, vol. 18, no. 1, pp. 1–22, 2004. View at Publisher · View at Google Scholar
  55. J. Chen, E. Hudson, M. M. Chi et al., “AMPK regulation of mouse oocyte meiotic resumption in vitro,” Developmental Biology, vol. 291, no. 2, pp. 227–238, 2006. View at Publisher · View at Google Scholar