Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010 (2010), Article ID 108632, 8 pages
http://dx.doi.org/10.1155/2010/108632
Review Article

Gastrointestinal Cytoprotection by PPAR 𝛾 Ligands

Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan

Received 29 April 2010; Accepted 23 August 2010

Academic Editor: Paul Drew

Copyright © 2010 Yuji Naito et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Mangelsdorf, C. Thummel, M. Beato et al., “The nuclear receptor super-family: the second decade,” Cell, vol. 83, no. 6, pp. 835–839, 1995. View at Google Scholar · View at Scopus
  2. T. Sher, H.-F. Yi, O. W. McBride, and F. J. Gonzalez, “cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor,” Biochemistry, vol. 32, no. 21, pp. 5598–5604, 1993. View at Google Scholar · View at Scopus
  3. A. Schmidt, N. Endo, S. J. Rutledge, R. Vogel, D. Shinar, and G. A. Rodan, “Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids,” Molecular Endocrinology, vol. 6, no. 10, pp. 1634–1641, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Elbrecht, Y. Chen, C. A. Cullinan et al., “Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors γ1 and γ2,” Biochemical and Biophysical Research Communications, vol. 224, no. 2, pp. 431–437, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. D. Auboeuf, J. Rieusset, L. Fajas et al., “Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients,” Diabetes, vol. 46, no. 8, pp. 1319–1327, 1997. View at Google Scholar · View at Scopus
  9. N. Marx, U. Schönbeck, M. A. Lazar, P. Libby, and J. Plutzky, “Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells,” Circulation Research, vol. 83, no. 11, pp. 1097–1103, 1998. View at Google Scholar · View at Scopus
  10. R. Mukherjee, L. Jow, D. Noonan, and D. P. McDonnell, “Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators,” Journal of Steroid Biochemistry and Molecular Biology, vol. 51, no. 3-4, pp. 157–166, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. O. H. Al-Taie, T. Graf, B. Illert et al., “Differential effects of PPARγ activation by the oral antidiabetic agent pioglitazone in Barrett's carcinoma in vitro and in vivo,” Journal of Gastroenterology, vol. 44, no. 9, pp. 919–929, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. C. Konturek, A. Nikiforuk, J. Kania, M. Raithel, E. G. Hahn, and S. M. Mühldorfer, “Activation of NFκB represents the central event in the neoplastic progression associated with Barrett's esophagus: a possible link to the inflammation and overexpression of COX-2, PPARγ and growth factors,” Digestive Diseases and Sciences, vol. 49, no. 7-8, pp. 1075–1083, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Takashima, Y. Fujiwara, M. Hamaguchi et al., “Relationship between peroxisome proliferator-activated receptor-gamma expression and differentiation of human esophageal squamous cell carcinoma,” Oncology Reports, vol. 13, no. 4, pp. 601–606, 2005. View at Google Scholar · View at Scopus
  14. Y. Terashita, H. Sasaki, N. Haruki et al., “Decreased peroxisome proliferator-activated receptor gamma gene expression is correlated with poor prognosis in patients with esophageal cancer,” Japanese Journal of Clinical Oncology, vol. 32, no. 7, pp. 238–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Naito, T. Takagi, K. Matsuyama, N. Yoshida, and T. Yoshikawa, “Pioglitazone, a specific PPAR-γ ligand, inhibits aspirin-induced gastric mucosal injury in rats,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 6, pp. 865–873, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Ichikawa, Y. Naito, T. Takagi, N. Tomatsuri, N. Yoshida, and T. Yoshikawa, “A specific peroxisome proliferator-induced receptor-γ (PPAR-γ) ligand, pioglitazone, ameliorates gastric mucosal damage induced by ischemia and reperfusion in rats,” Redox Report, vol. 7, no. 5, pp. 343–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. C. Konturek, T. Brzozowski, J. Kania et al., “Pioglitazone, a specific ligand of the peroxisome proliferator-activated receptor gamma reduces gastric mucosal injury induced by ischaemia/reperfusion in rat,” Scandinavian Journal of Gastroenterology, vol. 38, no. 5, pp. 468–476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Nakajima, K. Wada, H. Miki et al., “Endogenous PPARγ mediates anti-inflammatory activity in murine ischemia-reperfusion injury,” Gastroenterology, vol. 120, no. 2, pp. 460–469, 2001. View at Google Scholar · View at Scopus
  19. T. Takagi, Y. Naito, H. Ichikawa et al., “A PPAR-γ ligand, 15-deoxy-Δ12,14-prostaglandin J2, inhibited gastric mucosal injury induced by ischemia-reperfusion in rats,” Redox Report, vol. 9, no. 6, pp. 376–381, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. I. Villegas, A. R. Martin, W. Toma, and C. A. De La Lastra, “Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, protects against gastric ischemia-reperfusion damage in rats: role of oxygen free radicals generation,” European Journal of Pharmacology, vol. 505, no. 1–3, pp. 195–203, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Wada, A. Nakajima, H. Takahashi et al., “Protective effect of endogenous PPARγ against acute gastric mucosal lesions associated with ischemia-reperfusion,” American Journal of Physiology, vol. 287, no. 2, pp. G452–G458, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. Lahiri, T. Sen, and G. Palit, “Involvement of glucocorticoid receptor and peroxisome proliferator activated receptor-γ in pioglitazone mediated chronic gastric ulcer healing in rats,” European Journal of Pharmacology, vol. 609, no. 1–3, pp. 118–125, 2009. View at Publisher · View at Google Scholar · View at PubMed
  23. P. C. Konturek, T. Brzozowski, J. Kania et al., “Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, accelerates gastric ulcer healing in rat,” European Journal of Pharmacology, vol. 472, no. 3, pp. 213–220, 2003. View at Publisher · View at Google Scholar
  24. T. Brzozowski, P. C. Konturek, R. Pajdo et al., “Agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ): a new compound with potent gastroprotective and ulcer healing properties,” Inflammopharmacology, vol. 13, no. 1–3, pp. 317–330, 2005. View at Publisher · View at Google Scholar · View at PubMed
  25. Y. Naito, T. Takagi, K. Uchiyama et al., “Suppression of intestinal ischemia-reperfusion injury by a specific peroxisome proliferator-activated receptor-γ ligand, pioglitazone, in rats,” Redox Report, vol. 7, no. 5, pp. 294–299, 2002. View at Publisher · View at Google Scholar
  26. S. Cuzzocrea, B. Pisano, L. Dugo et al., “Rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J 2, ligands of the peroxisome proliferator-activated receptor-γ (PPAR-γ), reduce ischaemia/reperfusion injury of the gut,” British Journal of Pharmacology, vol. 140, no. 2, pp. 366–376, 2003. View at Publisher · View at Google Scholar · View at PubMed
  27. C. G. Su, X. Wen, S. T. Bailey et al., “A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response,” Journal of Clinical Investigation, vol. 104, no. 4, pp. 383–389, 1999. View at Google Scholar
  28. L. J. Saubermann, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis,” Inflammatory Bowel Diseases, vol. 8, no. 5, pp. 330–339, 2002. View at Google Scholar
  29. T. Takagi, Y. Naito, N. Tomatsuri et al., “Pioglitazone, a PPAR-γ ligand, provides protection from dextran sulfate sodium-induced colitis in mice in association with inhibition of the NF-κB-cytokine cascade,” Redox Report, vol. 7, no. 5, pp. 283–289, 2002. View at Publisher · View at Google Scholar
  30. K. L. Schaefer, S. Denevich, C. Ma et al., “Intestinal antiinflammatory effects of thiazolidenedione peroxisome proliferator-activated receptor-γ ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms,” Inflammatory Bowel Diseases, vol. 11, no. 3, pp. 244–252, 2005. View at Publisher · View at Google Scholar
  31. J. Bassaganya-Riera, K. Reynolds, S. Martino-Catt et al., “Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease,” Gastroenterology, vol. 127, no. 3, pp. 777–791, 2004. View at Publisher · View at Google Scholar
  32. P. Desreumaux, L. Dubuquoy, S. Nutten et al., “Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor γ (PPARγ) heterodimer: a basis for new therapeutic strategies,” Journal of Experimental Medicine, vol. 193, no. 7, pp. 827–838, 2001. View at Publisher · View at Google Scholar
  33. M. Sánchez-Hidalgo, A. R. Martín, I. Villegas, and C. Alarcón de la Lastra, “Rosiglitazone, a PPARγ ligand, modulates signal transduction pathways during the development of acute TNBS-induced colitis in rats,” European Journal of Pharmacology, vol. 562, no. 3, pp. 247–258, 2007. View at Publisher · View at Google Scholar · View at PubMed
  34. C. Rousseaux, B. Lefebvre, L. Dubuquoy et al., “Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-γ,” Journal of Experimental Medicine, vol. 201, no. 8, pp. 1205–1215, 2005. View at Publisher · View at Google Scholar · View at PubMed
  35. C. Lytle, T. J. Tod, K. T. Vo, J. W. Lee, R. D. Atkinson, and D. S. Straus, “The peroxisome proliferator-activated receptor γ ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency,” Inflammatory Bowel Diseases, vol. 11, no. 3, pp. 231–243, 2005. View at Publisher · View at Google Scholar
  36. K. Sugawara, T. S. Olson, C. A. Moskaluk et al., “Linkage to peroxisome proliferator-activated receptor-γ in SAMP1/YitFc mice and in human Crohn's disease,” Gastroenterology, vol. 128, no. 2, pp. 351–360, 2005. View at Publisher · View at Google Scholar
  37. B. J. Marshall and J. R. Warren, “Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration,” Lancet, vol. 1, no. 8390, pp. 1311–1314, 1984. View at Google Scholar
  38. International Agency for Research on Cancer WHO, “Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans,” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 61, pp. 1–241, 1994. View at Google Scholar
  39. B. L. Slomiany and A. Slomiany, “Suppression of gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharide by peroxisome proliferator-activated receptor γ activation,” IUBMB Life, vol. 53, no. 6, pp. 303–308, 2002. View at Publisher · View at Google Scholar · View at PubMed
  40. H. Haruna, T. Shimizu, Y. Ohtsuka et al., “Expression of COX-1, COX-2, and PPAR-γ in the gastric mucosa of children with Helicobacter pylori infection,” Pediatrics International, vol. 50, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. P. C. Konturek, J. Kania, V. Kukharsky et al., “Implication of peroxisome proliferator-activated receptor γ and proinflammatory cytokines in gastric carcinogenesis: link to Helicobacter pylori-infection,” Journal of Pharmacological Sciences, vol. 96, no. 2, pp. 134–143, 2004. View at Publisher · View at Google Scholar
  42. C. W. Cheon, D. H. Kim, D. H. Kim, Y. H. Cho, and J. H. Kim, “Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells,” World Journal of Gastroenterology, vol. 15, no. 3, pp. 310–320, 2009. View at Publisher · View at Google Scholar
  43. J. Lu, K. Imamura, S. Nomura et al., “Chemopreventive effect of peroxisome proliferator-activated receptor γ on gastric carcinogenesis in mice,” Cancer Research, vol. 65, no. 11, pp. 4769–4774, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. M. Nagamine, T. Okumura, S. Tanno et al., “PPARγ ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells,” Cancer Science, vol. 94, no. 4, pp. 338–343, 2003. View at Publisher · View at Google Scholar
  45. S. S. Deeb, L. Fajas, M. Nemoto et al., “A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity,” Nature Genetics, vol. 20, no. 3, pp. 284–287, 1998. View at Publisher · View at Google Scholar · View at PubMed
  46. S. Landi, V. Moreno, L. Gioia-Patricola et al., “Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor α, NFKB1, and peroxisome proliferator-activated receptor γ with colorectal cancer,” Cancer Research, vol. 63, no. 13, pp. 3560–3566, 2003. View at Google Scholar
  47. D. Altshuler, J. N. Hirschhorn, M. Klannemark et al., “The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes,” Nature Genetics, vol. 26, no. 1, pp. 76–80, 2000. View at Publisher · View at Google Scholar · View at PubMed
  48. S. J. Chae, J. J. Kim, Y. M. Choi, J. M. Kim, Y. M. Cho, and S. Y. Moon, “Peroxisome proliferator-activated receptor-γ and its coactivator-1α gene polymorphisms in korean women with polycystic ovary syndrome,” Gynecologic and Obstetric Investigation, vol. 70, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at PubMed
  49. S.-H. Oh, S.-M. Park, J.-S. Park et al., “Association analysis of peroxisome proliferator-activated receptors gamma gene polymorphisms with asprin hypersensitivity in asthmatics,” Allergy, Asthma and Immunology Research, vol. 1, no. 1, pp. 30–35, 2009. View at Publisher · View at Google Scholar · View at PubMed
  50. K. R. Hwang, Y. M. Choi, J. M. Kim et al., “Association of peroxisome proliferator-activated receptor-γ 2 Pro12Ala polymorphism with advanced-stage endometriosis,” American Journal of Reproductive Immunology. In press.
  51. S.-Y. Liao, Z.-R. Zeng, W. K. Leung et al., “Peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphism, Helicobacter pylori infection and non-cardia gastric carcinoma in Chinese,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 2, pp. 289–294, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. K. N. Prasad, A. Saxena, U. C. Ghoshal, M. R. Bhagat, and N. Krishnani, “Analysis of Pro12Ala PPAR gamma polymorphism and Helicobacter pylori infection in gastric adenocarcinoma and peptic ulcer disease,” Annals of Oncology, vol. 19, no. 7, pp. 1299–1303, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. T. Tahara, T. Arisawa, T. Shibata et al., “Influence of peroxisome proliferator-activated receptor (PPAR)γ Plo12Ala polymorphism as a shared risk marker for both gastric cancer and impaired fasting glucose (IFG) in Japanese,” Digestive Diseases and Sciences, vol. 53, no. 3, pp. 614–621, 2008. View at Publisher · View at Google Scholar · View at PubMed
  54. L. Dubuquoy, E. A. Jansson, S. Deeb et al., “Impaired expression of peroxisome proliferator-activated receptor γin ulcerative colitis,” Gastroenterology, vol. 124, no. 5, pp. 1265–1276, 2003. View at Publisher · View at Google Scholar
  55. S. E. Chang, S. H. Dong, H. L. Seung et al., “Attenuation of colonic inflammation by PPARγ in intestinal epithelial cells: effect on toll-like receptor pathway,” Digestive Diseases and Sciences, vol. 51, no. 4, pp. 693–697, 2006. View at Publisher · View at Google Scholar · View at PubMed
  56. N. Baregamian, J. M. Mourot, A. R. Ballard, B. M. Evers, and D. H. Chung, “PPAR-γ agonist protects against intestinal injury during necrotizing enterocolitis,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 423–427, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. K. Katayama, K. Wada, A. Nakajima et al., “A novel PPARγ gene therapy to control inflammation associated with inflammatory bowel disease in a murine model,” Gastroenterology, vol. 124, no. 5, pp. 1315–1324, 2003. View at Publisher · View at Google Scholar
  59. L. Klotz, I. Dani, F. Edenhofer et al., “Peroxisome proliferator-activated receptor γ control of dendritic cell function contributes to development of CD4+ T cell anergy,” Journal of Immunology, vol. 178, no. 4, pp. 2122–2131, 2007. View at Google Scholar
  60. R. Hontecillas and J. Bassaganya-Riera, “Peroxisome proliferator-activated receptor γ is required for regulatory CD4+ T cell-mediated protection against colitis,” Journal of Immunology, vol. 178, no. 5, pp. 2940–2949, 2007. View at Google Scholar
  61. J. D. Lewis, G. R. Lichtenstein, R. B. Stein et al., “An open-label trial of the PPARγ ligand rosiglitazone for active ulcerative colitis,” American Journal of Gastroenterology, vol. 96, no. 12, pp. 3323–3328, 2001. View at Publisher · View at Google Scholar
  62. R. N. DuBois, R. Gupta, J. Brockman, B. S. Reddy, S. L. Krakow, and M. A. Lazar, “The nuclear eicosanoid receptor, PPARγ, is aberrantly expressed in colonic cancers,” Carcinogenesis, vol. 19, no. 1, pp. 49–53, 1998. View at Publisher · View at Google Scholar
  63. P. Sarraf, E. Mueller, D. Jones et al., “Differentiation and reversal of malignant changes in colon cancer through PPARγ,” Nature Medicine, vol. 4, no. 9, pp. 1046–1052, 1998. View at Publisher · View at Google Scholar · View at PubMed
  64. W.-L. Yang and H. Frucht, “Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells,” Carcinogenesis, vol. 22, no. 9, pp. 1379–1383, 2001. View at Google Scholar
  65. E. Osawa, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor γ ligands suppress colon carcinogenesis induced by azoxymethane in mice,” Gastroenterology, vol. 124, no. 2, pp. 361–367, 2003. View at Publisher · View at Google Scholar · View at PubMed
  66. A.-M. Lefebvre, I. Chen, P. Desreumaux et al., “Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APC(Min)/+ mice,” Nature Medicine, vol. 4, no. 9, pp. 1053–1057, 1998. View at Publisher · View at Google Scholar · View at PubMed