Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 483958, 9 pages
http://dx.doi.org/10.1155/2010/483958
Review Article

Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism

1Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
2Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
3Laboratory of Food Nutrition, Division of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan

Received 8 February 2010; Accepted 23 March 2010

Academic Editor: Harry Martin

Copyright © 2010 Tsuyoshi Goto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Sacchettini and C. D. Poulter, “Creating isoprenoid diversity,” Science, vol. 277, no. 5333, pp. 1788–1789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. S. T. Withers and J. D. Keasling, “Biosynthesis and engineering of isoprenoid small molecules,” Applied Microbiology and Biotechnology, vol. 73, no. 5, pp. 980–990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Penuelas and S. Munne-Bosch, “Isoprenoids: an evolutionary pool for photoprotection,” Trends in Plant Science, vol. 10, no. 4, pp. 166–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. L. Grochowski, H. Xu, and R. H. White, “Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate,” Journal of Bacteriology, vol. 188, no. 9, pp. 3192–3198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Rohmer, M. Knani, P. Simonin, B. Sutter, and H. Sahm, “Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate,” Biochemical Journal, vol. 295, no. 2, pp. 517–524, 1993. View at Google Scholar · View at Scopus
  6. F. Rohdich, S. Hecht, K. Gärtner et al., “Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1158–1163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Laule, A. Furholz, H.-S. Chang et al., “Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6866–6871, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Munné-Bosch and L. Alegre, “The function of tocopherols and tocotrienols in plants,” Critical Reviews in Plant Sciences, vol. 21, no. 1, pp. 31–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Mo and C. E. Elson, “Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids,” Journal of Nutrition, vol. 129, no. 4, pp. 804–813, 1999. View at Google Scholar · View at Scopus
  10. R. M. Evans, “The steroid and thyroid hormone receptor superfamily,” Science, vol. 85, pp. 8444–8448, 1988. View at Google Scholar
  11. D. J. Mangelsdorf, C. Thummel, M. Beato et al., “The nuclear receptor super-family: the second decade,” Cell, vol. 83, no. 6, pp. 835–839, 1995. View at Google Scholar · View at Scopus
  12. D. J. Mangelsdorf and R. M. Evans, “The RXR heterodimers and orphan receptors,” Cell, vol. 83, no. 6, pp. 841–850, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Giguere, “Orphan nuclear receptors: from gene to function,” Endocrine Reviews, vol. 20, no. 5, pp. 689–725, 1999. View at Google Scholar · View at Scopus
  14. C. K. Glass, “Going nuclear in metabolic and cardiovascular disease,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 556–560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Chawta, J. J. Repa, R. M. Evans, and D. J. Mangelsdorf, “Nuclear receptors and lipid physiology: opening the X-files,” Science, vol. 294, no. 5548, pp. 1866–1870, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Lazar, “East meets West: an herbal tea finds a receptor,” Journal of Clinical Investigation, vol. 113, no. 1, pp. 23–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Klinge, K. E. Risinger, M. B. Watts, V. Beck, R. Eder, and A. Jungbauer, “Estrogenic activity in white and red wine extracts,” Journal of Agricultural and Food Chemistry, vol. 51, no. 7, pp. 1850–1857, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Inoue, X.-F. Jiang, T. Katayama, S. Osada, K. Umesono, and S. Namura, “Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice,” Neuroscience Letters, vol. 352, no. 3, pp. 203–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. T. Howitz, K. J. Bitterman, H. Y. Cohen et al., “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no. 6954, pp. 191–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. M. Evans, G. D. Barish, and Y.-X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kawada, T. Goto, S. Hirai et al., “Dietary regulation of nuclear receptors in obesity-related metabolic syndrome,” Asia Pacific Journal of Clinical Nutrition, vol. 17, supplement 1, pp. 126–130, 2008. View at Google Scholar · View at Scopus
  22. P. Ordentlich, M. Downes, and R. M. Evans, “Corepressors and nuclear hormone receptor function,” Current Topics in Microbiology and Immunology, vol. 254, pp. 101–116, 2001. View at Google Scholar · View at Scopus
  23. K. Jepsen and M. G. Rosenfeld, “Biological roles and mechanistic actions of corepressor complexes,” Journal of Cell Science, vol. 115, no. 4, pp. 689–698, 2002. View at Google Scholar · View at Scopus
  24. M. L. Privalsky, “The role of corepressors in transcriptional regulation by nuclear hormone receptors,” Annual Review of Physiology, vol. 66, pp. 315–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Lefebvre, G. Chinetti, J.-C. Fruchart, and B. Staels, “Sorting out the roles of PPAR α in energy metabolism and vascular homeostasis,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 571–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-X. Wang, C.-H. Lee, S. Tiep et al., “Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity,” Cell, vol. 113, no. 2, pp. 159–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Tanaka, J. Yamamoto, S. Iwasaki et al., “Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 15924–15929, 2003. View at Google Scholar
  28. R. K. Semple, V. K. K. Chatterjee, and S. O'Rahilly, “PPAR gamma and human metabolic disease,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 581–589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Vanden Berghe, L. Vermeulen, P. Delerive, K. De Bosscher, B. Staels, and G. Haegeman, “A paradigm for gene regulation: inflammation, NF-κB and PPAR,” Advances in Experimental Medicine and Biology, vol. 544, pp. 181–196, 2003. View at Google Scholar · View at Scopus
  30. P. Delerive, K. De Bosscher, S. Besnard et al., “Peroxisome proliferator-activated receptor a negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-?B and AP-1,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32048–32054, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. C.-H. Lee, A. Chawla, N. Urbiztondo, D. Liao, W. A. Boisvert, and R. M. Evans, “Transcriptional repression of atherogenic inflammation: modulation by PPARdelta,” Science, vol. 302, no. 5644, pp. 453–457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Pascual, A. L. Fong, S. Ogawa et al., “A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma,” Nature, vol. 437, no. 7059, pp. 759–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Fernandez-Real and W. Ricart, “Insulin resistance and chronic cardiovascular inflammatory syndrome,” Endocrine Reviews, vol. 24, no. 3, pp. 278–301, 2003. View at Google Scholar · View at Scopus
  35. Y.-H. Yu and H. N. Ginsberg, “Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue,” Circulation Research, vol. 96, no. 10, pp. 1042–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Yu, C.-S. Kim, B.-S. Kwon, and T. Kawada, “Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice,” Obesity, vol. 14, no. 8, pp. 1353–1362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Suganami, J. Nishida, and Y. Ogawa, “A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor α,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 10, pp. 2062–2068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. C. E. Elson, G. L. Underbakke, P. Hanson, E. Shrago, R. H. Wainberg, and A. A. Qureshi, “Impact of lemongrass oil, an essential oil, on serum cholesterol,” Lipids, vol. 24, no. 8, pp. 677–679, 1989. View at Google Scholar · View at Scopus
  39. A. L. Miller, “Dimercaptosuccinic acid (DMSA), a non-toxic, water-soluble treatment for heavy metal toxicity,” Alternative Medicine Review, vol. 3, no. 3, pp. 199–207, 1998. View at Google Scholar · View at Scopus
  40. N. Takahashi, T. Kawada, T. Goto et al., “Dual action of isoprenols from herbal medicines on both PPAR? and PPARa in 3T3-L1 adipocytes and HepG2 hepatocytes,” FEBS Letters, vol. 514, no. 2-3, pp. 315–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. L. He, H. Mo, S. Hadisusilo, A. A. Qureshi, and C. E. Elson, “Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo,” Journal of Nutrition, vol. 127, no. 5, pp. 668–674, 1997. View at Google Scholar · View at Scopus
  42. Y. D. Burke, M. J. Stark, S. L. Roach, S. E. Sen, and P. L. Crowell, “Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol,” Lipids, vol. 32, no. 2, pp. 151–156, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. S. G. Yu, L. A. Hildebrandt, and C. E. Elson, “Geraniol, an inhibitor of mevalonate biosynthesis, suppresses the growth of hepatomas and melanomas transplanted to rats and mice,” Journal of Nutrition, vol. 125, no. 11, pp. 2763–2767, 1995. View at Google Scholar · View at Scopus
  44. J.-B. Roullet, U. C. Luft, H. Xue et al., “Farnesol inhibits L-type Ca2+ channels in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 272, no. 51, pp. 32240–32246, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. D. L. Bradfute and R. D. Simoni, “Non-sterol compounds that regulate cholesterogenesis. Analogues of farnesyl pyrophosphate reduce 3-hydroxy-3-methylglutaryl-coenzyme A reductase levels,” Journal of Biological Chemistry, vol. 269, no. 9, pp. 6645–6650, 1994. View at Google Scholar · View at Scopus
  46. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J.-C. Fruchart, “Mechanism of action of fibrates on lipid and lipoprotein metabolism,” Circulation, vol. 98, no. 19, pp. 2088–2093, 1998. View at Google Scholar · View at Scopus
  48. E. Swiezewska and W. Danikiewicz, “Polyisoprenoids: structure, biosynthesis and function,” Progress in Lipid Research, vol. 44, no. 4, pp. 235–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. J. H. Baxter, “Absorption of chlorophyll phytol in normal man and in patients with Refsum's disease,” Journal of Lipid Research, vol. 9, no. 5, pp. 636–641, 1968. View at Google Scholar · View at Scopus
  50. P. J. Brown, G. Mei, F. B. Gibberd et al., “Diet and Refsum's disease. The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease,” Journal of Human Nutrition and Dietetics, vol. 6, no. 4, pp. 295–305, 1993. View at Google Scholar · View at Scopus
  51. D. M. van den Brink and R. J. A. Wanders, “Phytanic acid: production from phytol, its breakdown and role in human disease,” Cellular and Molecular Life Sciences, vol. 63, no. 15, pp. 1752–1765, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Schluter, P. Yubero, R. Iglesias, M. Giralt, and F. Villarroya, “The chlorophyll-derived metabolite phytanic acid induces white adipocyte differentiation,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, no. 9, pp. 1277–1280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Kitareewan, L. T. Burka, K. B. Tomer et al., “Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR,” Molecular Biology of the Cell, vol. 7, no. 8, pp. 1153–1166, 1996. View at Google Scholar · View at Scopus
  54. P. Ellinghaus, C. Wolfrum, G. Assmann, F. Spener, and U. Seedorf, “Phytanic acid activates the peroxisome proliferator-activated receptor α (PPARα) in sterol carrier protein 2-/sterol carrier protein x-deficient mice,” Journal of Biological Chemistry, vol. 274, no. 5, pp. 2766–2772, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Gloerich, N. van Vlies, G. A. Jansen et al., “A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARa-dependent and—independent pathways,” Journal of Lipid Research, vol. 46, no. 4, pp. 716–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. J. H. Baxter, “Absorption of chlorophyll phytol in normal man and in patients with Refsum's disease,” Journal of Lipid Research, vol. 9, no. 5, pp. 636–641, 1968. View at Google Scholar · View at Scopus
  57. T. Goto, N. Takahashi, S. Kato et al., “Phytol directly activates peroxisome proliferator-activated receptor a (PPARa) and regulates gene expression involved in lipid metabolism in PPARa-expressing HepG2 hepatocytes,” Biochemical and Biophysical Research Communications, vol. 337, no. 2, pp. 440–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. F. J. Aranda and J. Villalain, “The interaction of abietic acid with phospholipid membranes,” Biochimica et Biophysica Acta, vol. 1327, no. 2, pp. 171–180, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Mitani, M. Fujioka, A. Uchida, and H. Kataoka, “Analysis of abietic acid and dehydroabietic acid in food samples by in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1146, no. 1, pp. 61–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Fernandez, M. P. Tornos, M. D. Garcia, B. de las Heras, A. M. Villar, and M. T. Saenz, “Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea,” Journal of Pharmacy and Pharmacology, vol. 53, no. 6, pp. 867–872, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Takahashi, T. Kawada, T. Goto et al., “Abietic acid activates peroxisome proliferator-activated receptor-? (PPAR?) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism,” FEBS Letters, vol. 550, no. 1–3, pp. 190–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M.-S. Kang, S. Hirai, T. Goto et al., “Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation,” Biochemical and Biophysical Research Communications, vol. 369, no. 2, pp. 333–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M.-S. Kang, S. Hirai, T. Goto et al., “Dehdroabietic acid,a diterpene improves diabetes and hyperlipdemia in obese diabitic KK-Ay mice,” BioFactors, vol. 35, no. 5, pp. 442–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Ito, M. Itoigawa, M. Ju-Ichi et al., “Antitumor-promoting activity of coumarins from citrus plants,” Planta Medica, vol. 71, no. 1, pp. 84–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Montonen, R. Jervinen, M. Heliovaara, A. Reunanen, A. Aromaa, and P. Knekt, “Food consumption and the incidence of type II diabetes mellitus,” European Journal of Clinical Nutrition, vol. 59, no. 3, pp. 441–448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Kuroyanagi, M.-S. Kang, T. Goto et al., “Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes,” Biochemical and Biophysical Research Communications, vol. 366, no. 1, pp. 219–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Takahashi, M.-S. Kang, K. Kuroyanagi et al., “Auraptene, a citrus fruit compound, regulates gene expression as a PPARa agonist in HepG2 hepatocytes,” BioFactors, vol. 33, no. 1, pp. 25–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Giuliano, C. Rosati, and P. M. Bramley, “To dye or not to dye: biochemistry of annatto unveiled,” Trends in Biotechnology, vol. 21, no. 12, pp. 513–516, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Bouvier, O. Dogbo, and B. Camara, “Biosynthesis of the food and cosmetic plant pigment bixin (annatto),” Science, vol. 300, no. 5628, pp. 2089–2091, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Kiokias and M. H. Gordon, “Dietary supplementation with a natural carotenoid mixture decreases oxidative stress,” European Journal of Clinical Nutrition, vol. 57, no. 9, pp. 1135–1140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. M. K. Reddy, R. L. Alexander-Lindo, and M. G. Nair, “Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors,” Journal of Agricultural and Food Chemistry, vol. 53, no. 23, pp. 9268–9273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. C. R. Silva, L. M. Greggi-Antunes, and M. D. L. P. Bianchi, “Antioxidant action of bixin against cisplatin-induced chromosome aberrations and lipid peroxidation in rats,” Pharmacological Research, vol. 43, no. 6, pp. 561–566, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. K. R. M. Russell, F. O. Omoruyi, K. O. Pascoe, and E. Y. A. Morrison, “Hypoglycaemic activity of Bixa orellana extract in the dog,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 30, no. 4, pp. 301–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. C. S. Fernandes, C. A. Almeida, F. Albano et al., “Norbixin ingestion did not induce any detectable DNA breakage in liver and kidney but caused a considerable impairment in plasma glucose levels of rats and mice,” Journal of Nutritional Biochemistry, vol. 13, no. 7, pp. 411–420, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Takahashi, T. Goto, A. Taimatsu et al., “Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR? activation,” Biochemical and Biophysical Research Communications, vol. 390, no. 4, pp. 1372–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Giugliano, A. Ceriello, and K. Esposito, “Are there specific treatments for the metabolic syndrome?” American Journal of Clinical Nutrition, vol. 87, no. 1, pp. 8–11, 2008. View at Google Scholar · View at Scopus